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Abstract

Different species can associate or interact in many ways, and methods exist for infer-

ring associations and underlying mechanisms from incidence data (e.g., co-occurrence

frameworks). These methods have received criticism despite their recent resurgence

in the literature. However, co-occurrence frameworks for identifying nonrandomly

associated species pairs (e.g., aggregated or segregated pairs) have value as heuristic

tools for sharpening hypotheses concerning fish ecology. This paper provides a case

study examining species co-occurrence across 33 stream fish assemblages in south-

eastern Oklahoma, USA, which were sampled twice (1974 and 2014). This study

sought to determine (a) which species were nonrandomly associated, (b) what pro-

cesses might have driven these associations and (c) how consistent patterns were

across time. Associations among most pairs of species (24 species, 276 unique pairs)

were not significantly different from random (>80%). Among all significant, non-

randomly associated species pairs (54 unique pairs), 78% (42 pairs) were aggregated

and 22% (12 pairs) segregated. Most of these (28 pairs, 52%) were hypothesized to

be driven by nonbiotic mechanisms: habitat filtering (20 pairs, 37%), dispersal limita-

tion (two pairs, 0.4%) or both (six pairs, 11%). The remaining 26 nonrandomly associ-

ated pairs (48%) had no detectable signal of spatial or environmental factors involved

with the association, therefore the potential for biotic interaction was not refuted.

Only five species pairs were consistently associated across both sampling periods:

stonerollers Campostoma spp. and orangebelly darter Etheostoma radiosum; red shiner

Cyprinella lutrensis and bullhead minnow Pimephales vigilax; bluegill sunfish Lepomis

macrochirus and redear sunfish Lepomis microlophus; redfin shiner Lythrurus umbratilis

and bluntnose minnow Pimephales notatus; and bigeye shiner Notropis boops and

golden shiner Notemigonus crysoleucas. Frameworks for identifying nonrandomly

associated species pairs can provide insight into broader mechanisms of species

assembly and point to potentially interesting species interactions (out of many possi-

ble pairs). However, this approach is best applied as a tool for sharpening hypotheses

to be investigated further. Rather than a weakness, the heuristic nature is the

strength of such methods, and can help guide biologists toward better questions by
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employing relatively cheap diversity survey data, which are often already in hand, to

reduce complex interaction networks down to their nonstochastic parts which war-

rant further investigation.

K E YWORD S

biotic interactions, dispersal limitation, habitat filtering, nonrandom association, null model
analysis, probabilistic species association

1 | INTRODUCTION

Interactions among species are an important piece of the ecological

and evolutionary puzzle (Benton, 2009; Schemske et al., 2009) and,

because of interdependence among species, a key component of

wholistic conservation (Gilman et al., 2010; Wisz et al., 2013). Within

and among assemblages there are myriad ways individuals of different

species can interact in space and time. Considerable attention has

been given to competition (Bonin et al., 2015; Schluter, 1994), which

has waxed and waned considerably through time (Matthews, 1998;

Wiens, 1977). Other examples include predator/prey (or parasite/

host) interactions (Arag�on & S�anchez-Fern�andez, 2013; Power et al.,

1985; Zurell et al., 2018) and less commonly studied facilitative and

mutualistic interactions (Peoples & Frimpong, 2016; Silknetter et al.,

2020; Stachowicz, 2001). Even in the absence of biotic interaction

among species, other forces can lead to certain species co-occurring

together more or less often than expected by chance alone (aggrega-

tion or segregation, respectively), including habitat filtering, niche par-

titioning and species packing (Geheber & Frenette, 2016; Heino &

Grönroos, 2013; Werner, 1977), spatial filtering via dispersal limitation

or historical contingency (Blois et al., 2014; Gilpin & Diamond, 1982;

Schamp et al., 2015), and neutral or stochastic dynamics such as eco-

logical drift (Bell, 2005; Hubbell, 2001; Ulrich, 2004). Further adding

to the complexity of the interdependent web among interacting spe-

cies is the element of time and space. For example, changes in density

of one or both interactors through time due to predation or distur-

bance (McMeans et al., 2020; Wiens, 1977) and/or seasonality

(Brimacombe et al., 2020), or through space due to environmental gra-

dients (Case & Taper, 2000; Schwilk & Ackerly, 2005), can obscure—

or at least alter—any pattern of association we might expect to

observe.

Detecting species interactions has often relied on controlled

experiments or direct natural history observation (Silknetter et al.,

2020). Even in small systems the number of interactions increases

quickly with the number of species until it becomes intractable to

assess each individually (Morales-Castilla et al., 2015). Therefore, ecol-

ogists have developed methods to statistically test for nonrandom

associations among species from incidence data as a means to circum-

vent such an arduous task (Forbes, 1907; Pielou & Pielou, 1968).

These methods were largely born out of an interest in identifying

competition among species (Diamond, 1975), but were later general-

ized using null modelling to provide more rigorous tests for identifying

patterns of both aggregation and segregation (Connor & Simberloff,

1979; Gotelli, 2000; Peres-Neto, 2004). Because of the multitude of

factors, both biotic and abiotic, which can drive patterns of associa-

tion (Barner et al., 2018; Blanchet et al., 2020), more recent work has

combined earlier methods for identifying nonrandom associations

with additional multivariate approaches (e.g., Blois et al., 2014) which

incorporate spatial and environmental data to disentangle the poten-

tial ecological mechanisms driving observed patterns (Cordero &

Jackson, 2019; Devercelli et al., 2016; Sfenthourakis et al., 2006).

Both methods for identifying associations and those more recent

extensions aimed at parsing them have faced considerable scrutiny

(Blanchet et al., 2020; Peterson et al., 2020; Thurman et al., 2019).

Methods for identifying associations face several issues. For one, as

with many ecological methods, there is a variety of approaches and

they are not all equally robust for detecting associations (Barner et al.,

2018; Lavender et al., 2019). Furthermore, ecological interactions may

not lead to the clear spatial patterns that we expect (Freilich et al.,

2018) and thus these methods can fall short of detecting them

(Cazelles et al., 2016). In addition, and as with all things ecological,

sampling biases caused by the difficult detection of rare species

(Calatayud et al., 2020; MacKenzie et al., 2004) and effects of spatial

scale of sampling grain (Perry et al., 2020) can affect the ability of

these methods to reliably identify real associations (Peterson et al.,

2020). As for interpreting ecological mechanisms from co-occurrence

data, it can be difficult to determine whether the pattern is driven by

habitat filtering or biotic processes because it is impossible to account

for each environmental facet that may govern an association, there-

fore unmeasured factors confound such conclusions (Blanchet et al.,

2020). Also, interaction networks (more than two species) preclude

pairwise analyses from detecting effects of additional species which

may have direct or indirect effects on either member of a pair

(Cazelles et al., 2016; Holt & Bonsall, 2017). Other properties of eco-

systems, such as habitat gradients, demographic dynamics and tempo-

ral changes (Brimacombe et al., 2020), all play a role in shifting species

associations and our ability to detect them, especially with incidence

data that merely provide a ‘snapshot’ of diversity in space and time

(Blanchet et al., 2020).

Species incidence is among the easiest of ecological data to

gather, and so it is reasonable to hope to extract as much information

as possible (e.g., species associations) from such data (Blanchet et al.,

2020). One of the biggest issues with these methods is what users

expect to get out of them. Because of the issues described above, it is

not reasonable to expect a definitive test of species associations and

mechanisms from such methods. Rather, species co-occurrence
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analyses are an exploratory tool (Silknetter et al., 2020) for finding sta-

tistically nonrandom associations among large sets of potentially inter-

acting pairs and sharpening hypotheses regarding the potential

underlying mechanisms. These associations should be further evalu-

ated through direct observation or experimental means to test these

hypotheses. Given the large number of species interactions in even

small communities (e.g., 10 species = 45 possible pairwise associa-

tions), these methods can help us find the ‘needles in the haystack’,
so to speak, and ask more focused questions about how fish species

interact.

Here, two frameworks are applied to investigate freshwater fish

species associations and how they have changed between two sam-

pling campaigns. These tests addressed several questions: (a) Which

species pairs are nonrandomly associated and how many are there?

(b) What do these frameworks tell us about mechanisms driving spe-

cies associations? and (c) Are species associations consistent among

two sampling campaigns executed 40 years apart?

2 | MATERIALS AND METHODS

2.1 | Study region and fish collection

The study region was in the south-central United States (southeastern

Oklahoma) within a relatively rugged topographic region known as the

U.S. Interior Highlands (Figure 1). Muddy Boggy Creek and Clear

Boggy Creek merge to form the Muddy Boggy River, which is a tribu-

tary to the Red River (Mississippi Basin). The Muddy Boggy River

flows southward and drains 6291 km2 from an area approximately

113 km (north–south) by 48 km (east–west). See Pigg (1977) and

Zbinden and Matthews (2017) for more detailed descriptions of the

region.

Fish collections were made in the Muddy Boggy River drainage

between 1974 and 1975 (Pigg, 1977) and between 2014 and 2015

(Zbinden & Matthews, 2017). From these collections, 33 sites sampled

at both times were included based on a previous study that used these

sites to quantify fish assemblage change over time (Zbinden, 2020). All

collections were made between May and September during low flows.

Seines of the appropriate size relative to the sampling reach

(1.22 � 2.44 or 4.57 m) with mesh sizes approximately 4.88 mm were

used to sample all available habitat within a stream reach transect

100 m in length. The fish collected at a site/locality constitute the ‘fish
assemblage’, which is synonymous with the term ‘fish community’
used by others for the sake of consistency (e.g., Matthews & Marsh-

Matthews, 2017). However, assemblage was chosen because fish

alone are a phylogenetically restricted piece of the whole community,

therefore an assemblage (sensu Fauth et al., 1996). Prior to analyses,

only species captured during both sampling periods were retained, and

species occurring at fewer than six sites in both time periods were

removed because of low statistical power for testing associations

(Cordero & Jackson, 2019; Gotelli & McCabe, 2002; Veech, 2013).

Two taxonomic changes were required. Central stoneroller Cam-

postoma anomalum (Rafinesque 1820) and highland stoneroller Cam-

postoma spadiceum (Girard 1856) collected in 2014 were collapsed

into Campostoma spp. because recognition of C. spadiceum did not

occur until after 1975 (Cashner et al., 2010) and thus were not differ-

entiated by J. Pigg. In the same manner, blackstripe topminnow

Fundulus notatus (Rafinesque 1820) and blackspotted topminnow

Fundulus olivaceus (Storer 1845) were collapsed into Fundulus spp. due

to identification issues in this region (J.F. Schaefer and W.J. Matthews,

pers. comm.)

2.2 | Spatial data

The pairwise fluvial network distance was calculated among all fish

sampling locations using the Network Analyst Extension in ArcGIS

v.10.8 (ESRI). This distance matrix was then decomposed into a rect-

angular matrix of spatial eigenvectors using distance-based Moran's

eigenvector map analysis (dbMEM; Stéphane Dray et al., 2006), also

known as principal coordinates of neighbour matrices (Borcard &

Legendre, 2002). The spatial eigenvectors were generated using the

function dbmem in the R statistical software (v.3.6.1, R Core Team,

2019) package adespatial (Dray et al., 2020), and only eigenvectors

with positive spatial autocorrelation (six MEMs) were retained.

2.3 | Environmental data

Environmental factors for each collection site were characterized

using data provided by HydroATLAS v.1.0 at 15 arc-second (�500 m)

F IGURE 1 Map of the Muddy Boggy River in south-eastern, OK,
USA. Sites where fish specimens were collected are marked with a
hollow black circle and the sampling ID is noted next to each
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resolution (Linke et al., 2019). This global compendium of sub-basin

and river reach characteristics contains 56 hydro-environmental fac-

tors partitioned into 281 attributes drawn from a multitude of global

datasets (Linke et al., 2019). The RiverATLAS v.10 shapefile for North

America was trimmed in ArcMAP (ESRI v.10.8) to include only the

subset of river network necessary for this study. This shapefile repre-

sented the river network and all associated environmental variables

along the stream reaches, which are defined as stretches of stream

between confluences or confluence and terminus. Geographic coordi-

nate data of sampling sites were imported into the GIS and exported

as a shapefile. Both shapefiles were projected using NAD 1983 (2011)

Contiguous USA Albers projection. Environmental attributes of the

river shapefile were joined to the appropriate sites using R packages

raster (Hijmans & van Etten, 2015) and sf (Pebesma, 2019). From

the total set (281 attributes), 22 variables were chosen because it was

expected that they would be similar between sampling periods or

because they represented long-term averages. To be clear, the envi-

ronmental data was identical between each sampling period, but the

characteristics were chosen specifically to match that assumption.

The environmental variables broadly characterize the hydrologic,

physiographic and geologic nature of the sampling locations. These

reach catchment variables (unless otherwise noted) included Strahler

stream order, mean annual discharge (1971–2000), mean annual land

surface runoff (1971–2000), maximum inundation extent (1993–

2004), river area, river area in the upstream catchment, river volume,

river volume in the upstream catchment, mean groundwater table

depth (1927–2009), mean elevation, mean terrain slope, mean stream

gradient, mean annual precipitation (1950–2000), extent of deciduous

tree cover in reach catchment, extent of evergreen tree cover in reach

catchment, extent of herbaceous cover in reach catchment, total for-

est cover in reach catchment, mean fraction of clay in soil of reach

catchment, mean fraction of silt in soil of reach catchment, mean frac-

tion of sand in soil of reach catchment, mean organic carbon fraction

in soil of reach catchment and spatial extent of exposed karst in reach

catchment. The descriptions above are based on the HydroATLAS cat-

alogue (https://hydrosheds.org/page/hydroatlas).

All environmental factors were standardized by mean and unit

standard deviation before being reduced using principal components

analysis, using function prcomp of the R package stats (R Core

Team, 2019) without scaling or centering because variables had

already been standardized. Six of the principal components were

retained to make the number of factors equal between spatial and

environmental sets [six principal components (PCs) and six MEMs].

These six PCs accounted for 87.6% of variation in the environmental

set. See the Supporting Information (Table S1) for full environmental

PCA details and factor loadings on each component.

Two testing frameworks (Figure 2) aimed at detecting significant

nonrandom species associations and subsequently hypothesizing

mechanisms that govern associations by incorporating the spatial and

environmental vectors were used (Blois et al., 2014; D'Amen et al.,

2018; Gotelli & Ulrich, 2010; Veech, 2013). The Null Model Frame-

work (Classic Framework sensu D'Amen et al., 2018) and The Probabi-

listic Framework (Veech, 2013) differ only in how significantly

nonrandom species associations are tested, but the same decision tree

approach for statistically deducing mechanisms via multivariate analy-

sis of variance is employed (descriptions below).

2.4 | Null model framework

The null model framework (NMF) uses the C-score index, a measure

of ‘checkerboardedness’ among species pairs (Stone & Roberts,

1990). The original index measured the average C-score for the entire

species incidence matrix, but here an index for each species pair is

desired. The following equation was used:

Cscoreab ¼ Ra�Sð Þ� Rb�Sð Þ
Ra�Rbð Þ

where the number of occurrences of species a is Ra and of species b is

Rb, and S is the number of sites where both species were collected. A

maximally aggregated species pair (all occurrences shared) will have a

C-score of 0 and a maximally segregated species pair (no sites in com-

mon) will have a C-score of 1.

C-score significance for each species pair was tested by generat-

ing 10,000 null assemblages by randomly reshuffling the observed

matrix. Column sums (species incidences) and row sums (per site spe-

cies richness) of null assemblages were constrained to be equal to the

observed matrix (fixed-fixed randomization sensu Connor &

Simberloff, 1979; Gotelli, 2000). Observed C-scores for each pair

were compared to the appropriate null distribution to test for signifi-

cance (α = 0.05). Where n is equal to the number of unique species in

the presence-absence matrix, the total number of species pairs tested

is equal to n[(n – 1)/2]. To reduce false detection error rate a mean-

based Bayes approach (Bayes M criterion) from Gotelli and Ulrich

(2010) and originally described by Efron (2005) was used. Significantly

associated species pairs are grouped as either aggregated or segre-

gated by comparing observed C-score with the mean randomized

score for a given species pair. Z-scores were calculated based on

10,000 randomizations. Large positive scores are associated with seg-

regating species and large negative scores are associated with aggre-

gating species (D'Amen et al., 2018; Gotelli & Ulrich, 2010). Results

from null model analysis were then used with the deductive logic tree

approach described below to hypothesize the processes underlying

each significant association (Figure 2).

2.5 | Probabilistic framework

The probabilistic framework (PRF) is an entirely different approach for

testing patterns of species co-occurrence based on probability theory.

This approach uses combinatorics (i.e., probability within finite sets) to

estimate the probability of species co-occurring at greater than or less

than observed sites by considering the possible combinations in which

a given pattern of species distributions in N sites could possibly be

observed (Equation 1 and Figure 2 from Veech, 2013). These
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probabilities may be obtained analytically and do not require a null

distribution or data randomization, which can itself introduce Type I

and II errors (Lavender et al., 2019; Veech, 2014). The probabilistic

approach determines whether species are positively (i.e., aggregated),

negatively (i.e., segregated), or randomly associated. The probabilistic

calculations are implemented in the R package cooccur (Griffith

et al., 2016). Although the NMF and the PRF differ in mathematical

approach, both result in a set of significantly associated species pairs

which can be further analysed as described below.

2.6 | Decision tree for statistically deducing
mechanisms

The analyses of species pairwise co-occurrence presented above can-

not determine the processes responsible for nonrandom species asso-

ciations by themselves, although they are often inferred as indicative

of biotic interaction (Peterson et al., 2020). However, by including

additional analyses of spatial and environmental data for each site, it

is possible to determine whether dispersal limitation or habitat filter-

ing are likely forces driving nonrandom associations, rather than biotic

interaction. If neither of those forces are significant, it is not possible

to refute a biotic interaction is possible. However, this hypothesis

should be tested further through direct observation or experimenta-

tion. Both the NMF and PRF incorporate the same decision tree

approach for disentangling mechanisms (Figure 2). This approach is

modified from Blois et al. (2014) and D'Amen et al. (2018).

Ultimately, multivariate analysis of variance (MANOVA) of different

site categories is used to test for significant spatial and environmental

effects on the nonrandom associations inferred from the analyses

described above. For each significantly associated species pair, the sites

in the incidence matrix belong to one of four mutually exclusive site-

type categories: both species present (1,1), neither species present (0,0),

or one species present without the other (1,0) and (0,1). Environmental

and spatial data are partitioned between site-type categories to test for

significant differences among them via MANOVA. These tests inform

the decision tree and lead to logical, deductive inferences regarding

potential mechanisms involved in species pair associations (Figure 2).

Allotopic sites, having one species without the other (1,0) and

(0,1), are contrasted to discern mechanisms for segregated species

pairs. If environmental factors and/or spatial arrangement differ

among these two site classes, then the pattern of segregation is likely

driven by those factors. However, if neither environment nor spatial

factors differ, then negative biotic interaction (e.g., competition or pre-

dation) is not rejected. However, this case cannot exclude other alter-

native hypotheses regarding segregation. For example, the pattern

could be driven by differences in unmeasured environmental factors.

Syntopic sites where both species were found (1,1) and sites with nei-

ther species (0,0) are compared to discern potential mechanisms for

aggregated species pairs in the same manner. Again, in the absence of

Null-Model Framework Probabilistic Framework

Species pair significantly associated?

Calculate pairwise C-scores & 
apply Bayesian correction.

Calculate expected pairwise co-occurrence 
and test significant observed deviations.

yes
no

Random Pair
Species pair aggregated or segregated?

Segregated Pair Aggregated Pair

Geographic distance between 
types of sites significant?

Geographic distance between 
types of sites significant?

yes yesno no

Environment difference
between types of
sites significant?

Environment difference
between types of
sites significant?

Environment difference
between types of
sites significant?

Environment difference
between types of
sites significant?

yes yes yes yesno no no no

Habitat filtering
Or

Dispersal limitation

Dispersal 
limitation

Habitat 
filtering

Negative
Biotic

Interaction

Habitat filtering
Or

Dispersal limitation

Dispersal 
limitation

Habitat 
filtering

Positive
Biotic

Interaction

F IGURE 2 Logic tree for deducing inferences driving significant species associations from incidence data. Null model and probabilistic
frameworks each use the same logic tree to make inferences (illustrated here). The frameworks differ in how significant associations are
determined. The null model framework relies on randomly shuffling the data matrix to generate random expectations, and the probabilistic
framework uses probabilistic combinatorics to quantify the expected probabilities of species aggregation and segregation based on the data set
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significant environmental or spatial difference between site-type classes,

the possibility of a biotic interaction remains. This could include several

interactions, including facilitation, predation or indirect effects with

other species (Blois et al., 2014) or unmeasured environmental factors.

Within each of the four frameworks (NMF1974, NMF2014,

PRF1974 and PRF2014), and following the identification of significant

associations, each significant species pair was tested for differences in

site-type categories (depending on aggregation or segregation as

explained) using MANOVA. The test for environmental effects was based

on six environmental PCs, while the test for spatial effects was based on

six spatial eigenvectors, both retained from above. A significant (α =

0.05) environmental effect is hypothesized to mean environmental filter-

ing is the mechanism underlying the association. A significant (α = 0.05)

spatial effect is hypothesized to mean dispersal limitation is the driving

force. In the case that both spatial and environmental effects are signifi-

cant it is likely that spatially autocorrelated habitat filtering is responsible.

If neither is significant, then it is not possible to reject the hypothesis of a

biotic interaction underlying the association. Marginally significant

(P < 0.1) effects are considered as enough evidence of spatial or environ-

mental signal to reduce associations that were attributed to biotic inter-

actions (see Supporting Information Tables S2-S7 for the full list of

results).

R code is available in the Supporting Information as R-scripts:

“null-model_framework.R" and “probabilistic_framework.R". In addi-

tion, all data files, including species incidence plus environment fac-

tors, shapefiles, and fluvial distance matrix, are available in the

Supporting Information.

2.7 | Ethical Statement

The collection of animals complied with the University of Oklahoma

Institutional Animal Care and Use Committee guidelines and policies

(OU-IACUC approval No. R14-002). All specimen collecting was per-

mitted by the Oklahoma Department of Wildlife Conservation

(No. 5995 and No. 6166).

3 | RESULTS

Twenty-four of the same native freshwater fish species were col-

lected in both sampling periods and were present in at least six sam-

ples in at least one sampling period (= 276 unique species pairs

analysed). No matter the year or framework, most species associations

were not different from random (Table 1). The PRF resulted in more

nonrandom species associations in both years (Table 1). Results from

NMF were skewed toward segregating associations, while those

resulting from PRF were mostly aggregations (Table 1). For 1974, five

of 10 associations from the NMF were also recovered with PRF; for

2014, it was only one of four associations. The associations found

exclusively by NMF in either year were all segregations. Associations

from each year and framework combination are available in

Supporting Information (Tables S2-S5).

Fifty-four unique nonrandom species associations (19.6%) were

found across years and frameworks (Supporting Information Tables

S6 and S7). Of these associations, 22 (41%) were between species of

the same family. Out of 24 species, only two were not involved in a

single significant nonrandom association: slough darter Etheostoma

gracile (Girard 1859) and orangespotted sunfish Lepomis humilis

(Girard 1858). The number of associations per species ranged from

0 to 8, with a mean of 4.45 associations. The number of nonrandom

species associations was not significantly associated with the number

of occurrences per species (R2 = 0.09, P = 0.16) or rank occurrence

(R2 = 0.12, P = 0.10) via linear regression (Figure 3).

Most nonrandom pairs were aggregated (42 pairs, 78%) compared

to segregated (12 pairs, 22%). Most of these pairs were hypothesized

as governed by nonbiotic processes (28 pairs, 52%): habitat filtering

(20 pairs, 37%), dispersal limitation (two pairs, 0.4%) or both (six pairs,

11%). The remaining 26 nonrandomly associated pairs (48%) had no

TABLE 1 Summary of outcomes for
species association modelling for two
years (1974 and 2014) and two
frameworks (null model framework and
probabilistic framework)

Year Framework Total random Total nonrandom Total aggregated Total segregated

1974 NMF 266 (94%) 10 (4%) 3 7

PRF 241 (87% 35 (13%) 31 4

2014 NMF 272 (99%) 4 (1%) 1 3

PRF 260 (94%) 16 (6%) 15 1

Note: For both years and analyses, the majority of the 276 unique species combinations were not

significantly different from random expectation (total random). Nonrandom pairs are broken down into

total aggregated and total segregated.

F IGURE 3 This scatterplot shows the relationship between the
number of nonrandom associations and rank occurrence (based on
number of occurrences across 66 samples) for each of the 24 species
analysed here

344 ZBINDENFISH



detectable difference in the appropriate site-type categories via

MANOVA, therefore the potential of biotic interaction was not

refuted. For the 42 aggregated species pairs, 19 pairs (45%) were

related to nonbiotic processes: habitat filtering (13 pairs, 31%), dis-

persal limitation (two pairs, 5%) or both (four pairs, 10%). The

remaining 23 (55%) aggregated pairs were potentially driven by

biotic interactions. For the 12 segregated species pairs, nine (75%)

were driven by nonbiotic processes: habitat filtering (seven pairs;

58%), dispersal limitation (zero pairs, 0%) or both space and habitat

(two pairs, 17%). Only three of 12 segregated pairs (25%) were

potentially driven by biotic interaction.

Among the 54 significantly nonrandom species pairs recovered

across analyses, only 10 were recovered in multiple scenarios, in

either both frameworks and/or across sampling periods (Table 2).

Only five of those pairs were found across both sampling periods.

Campostoma spp. and orangebelly darter Etheostoma radiosum

(Hubbs & Black 1941) were aggregated in both years with no dis-

cernable effect of dispersal limitation or habitat filtering. Red shiner

Cyprinella lutrensis (Baird & Girard 1853) and bullhead minnow

Pimephales vigilax (Baird & Girard 1853) were another aggregated

pair found across years with an effect of habitat filtering found in

both years. Bluegill sunfish Lepomis macrochirus Rafinesque 1819

and redear sunfish Lepomis microlophus (Günther 1859) were aggre-

gated across times again without a signal of spatial or environmen-

tal effect. Redfin shiner Lythrurus umbratilis (Girard 1856) and

bluntnose minnow Pimephales notatus (Rafinesque 1820) were yet

another aggregated pair with an effect of habitat filtering found in

1974 but not in 2014. Finally, bigeye shiner Notropis boops Gilbert

1884 and golden shiner Notemigonus crysoleucas (Mitchill 1814)

were the only segregated pair found consistently across time

periods and this association is likely due to spatially autocorrelated

habitat filtering.

4 | DISCUSSION

4.1 | Species co-occurrence

The results point to many associations among fish species in the

Muddy Boggy River drainage. The frameworks used herein were able

to identify 54 unique, significantly nonrandom associations from inci-

dence data that contained 276 pairwise comparisons. However, the

proportion of neutral associations (not different from random) was

high across both time periods and frameworks. This is typical for stud-

ies of this kind (Lopes et al., 2015; Lyons et al., 2016), but see Cordero

and Jackson (2019). Some authors have argued the large proportion

of random associations points to the importance of stochasticity in

structuring assemblages (Devercelli et al., 2016). While stochasticity

may play an important role, especially at smaller spatial scales

(Zbinden, 2020), there is also evidence for deterministic processes,

such as environmental filtering, structuring fish assemblages

(Cordero & Jackson, 2019; Zbinden & Matthews, 2017). Some caution

is warranted in rushing to conclusions regarding stochasticity (Rahel

et al., 1984) from analyses of this kind because of alternative explana-

tions which are not explicitly tested. First, by considering only

presence–absence data, information is lost and there is potential for

associations to go undetected. If, for example, two species sometimes

co-occur (weak signal), but when they do one of the species is invari-

ably less abundant than when found without the other, that evidence

might suggest a competitive interaction. However, this information is

lost when considering only incidence. Second, pairwise comparisons

have limited power to detect associations involving rare species due

to low statistical power (Lavender et al., 2019; Veech, 2013), which

are often a large portion of diversity in a region (Lavoie et al., 2009;

Magurran & Henderson, 2003). Third, sample sizes typical of most

biodiversity surveys are likely not large enough to reliably capture all

TABLE 2 Significant species association that were recovered in at least two frameworks or sampling periods

No. Species 1 Species 2 Hyp. Mech. Null mod.

No.

models 1974 NMF 1974 PRF 2014 NMF 2014 PRF

1 Campostoma spp. Etheostoma radiosum Biotic interaction AGGR 3 X X X

2 Cyprinella lutrensis Cyprinella venusta Habitat filtering SEGR 2 X X

3 Cyprinella lutrensis Pimephales vigilax Habitat filtering AGGR 2 X X

4 Fundulus spp. Micropterus punctulatus Spatial/habitat filtering AGGR 2 X X

5 Lepomis macrochirus Lepomis microlophus Biotic interaction AGGR 2 X X

6 Lythrurus umbratilis Pimephales notatus Habitat filtering AGGR 2 X X

7 Micropterus punctulatus Notemigonus crysoleucas Biotic interaction SEGR 2 X X

8 Notropis boops Notemigonus crysoleucas Spatial/habitat filtering SEGR 2 X X

9 Noturus nocturnus Percina sciera Biotic interaction AGGR 2 X X

10 Percina sciera Pimephales vigilax Habitat filtering AGGR 2 X X

Note: Column headers indicate which two species are part of the interaction (species 1 and species 2), the hypothesized mechanism driving the association

(hyp. mech.), the nature of the association, either aggregated or segregated (null mod.) and the number of models that returned this specific association as

significant, four total models (no. models), and the remining columns represent each model: null model 1974 (1974 NMF), probabilistic model 1974 (1974

PRF), null model 2014 (2014 NMF) and probabilistic model 2014 (2014 PRF).
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of the associations that may be present, with some estimates

suggesting upwards of 500 or more samples may be necessary to do

so (Blanchet et al., 2020). So, while stochasticity is an important mech-

anism (Ellwood et al., 2009; Vellend et al., 2014), we must not neglect

that methods that test co-occurrence are likely to result in many ‘ran-
dom’ associations simply due to their limitations independent of

stochasticity. Importantly, we should not neglect that an ‘assemblage’
(i.e., fish alone) is only a part of the larger community (e.g.,

macroinvertebrates, plants, etc.) in which interactions could be

observed.

4.2 | What about mechanisms?

The decision tree framework for disentangling likely mechanisms that

underly associations is constructed so that biotic interaction is essen-

tially the null hypothesis. Unfortunately, that means biotic interaction

can be refuted and alternatives supported, but in the absence of a sig-

nal from either spatial or environmental factors then the de facto

explanation for a significant association is biotic interaction. There-

fore, I emphasize that this inference should be viewed as hypothesis

generation rather than hypothesis testing per se. Species associations

that remain plausibly driven by biotic interaction should be judged by

those conducting the analyses to determine whether the categoriza-

tion makes ecological sense and warrants further investigation. It

remains possible that unmeasured environmental factors could be

involved in any of the associations identified. Additionally, the out-

comes from the framework are not mutually exclusive (Blois et al.,

2014), and the expected patterns from processes such as competition

and predation may not always be straightforward (Blanchet et al.,

2020; Cordero & Jackson, 2019).

Co-occurrence methods were largely developed with classic

species interactions in mind (e.g., competition and predation). How-

ever, the results here demonstrate that most significant associa-

tions, gleaned from incidence data gathered across this study

drainage, could be explained by nonbiotic mechanisms, namely hab-

itat filtering, but also dispersal limitation. It is intuitive that species

which differ in resource requirements (i.e., niche divergence) are

less likely to be found in the same stream reaches, while those

with similar requirements (i.e., niche convergence) would more

often co-occur. Indeed spatio-environmental filtering (Cordero &

Jackson, 2019; Peres-Neto, 2004; Zbinden & Matthews, 2017) is a

well-supported hypothesis of metacommunity theory (Er}os, 2017;

Leibold et al., 2004). While habitat filtering is interesting in and of

itself, if one is specifically seeking biotic interactions, then these

frameworks can reveal which associations are likely due to alterna-

tive explanations instead.

No species were inferred to be segregated due to spatial factors

alone (i.e., dispersal limitation); perhaps the relatively small spatial

scale of this study is not large enough to truly segregate species by

distance (Heino et al., 2015). Dispersal limitation was indicated, how-

ever, in the aggregation among Campostoma spp. and Pimephales

notatus and among E. radiosum and freckled madtom Noturus

nocturnus Jordan & Gilbert 1886. This suggests a pattern of nested,

not entirely overlapping, distributions among species within the pair.

Six interactions showed significant signal of both spatial and environ-

mental factors in structuring the association and likely indicates the

effect of spatially autocorrelated habitat filtering (Gotelli & Ulrich,

2012; Mykrä et al., 2007). In other words, the environmental factors

associated with the species interactions were themselves spatially

structured.

Only a small subset of the associations found here were segrega-

tions that remained plausibly driven by negative biotic interactions

which would fit the prediction for pairs of competitors or predator/

prey, although predator/prey relationships could result in aggrega-

tions as well (Cordero & Jackson, 2019), especially at the spatial scale

analysed here (Hoeinghaus et al., 2007). These pairs were spotted

bass Micropterus punctulatus (Rafinesque 1819) and Notemigonus crys-

oleucas, E. radiosum and white crappie Pomoxis annularis Rafinesque

1818, and Lythrurus umbratilis and Notemigonus crysoleucas. Both

M. punctulatus and P. annularis are large centrarchid predators which

could easily consume the other member of their respective pair.

N. crysoleucas is a common forage fish consumed by many fish preda-

tors (Webber & Haines, 2003) and E. radiosum is a small benthic

percid, although the only explicit test of predation on E. radiosum

showed a lack of piscine predation (Scalet, 1974). L. umbratilis and

N. crysoleucas are the only association that seems plausibly driven by

competition. Another study in Oklahoma also found no co-occurrence

among these two species at localities along a small creek (Stewart

et al., 1992). Both species occur in similar habitats and have similar

diets and feeding modes (Robison & Buchanan, 2020), and so compe-

tition seems plausible. It is of note that of the 12 segregated associa-

tions recovered here, N. crysoleucas was a member of six of them.

This species is highly tolerant of temperature and turbidity extremes,

making it a good competitor (Robison & Buchanan, 2020). Overall,

very little evidence of competition among the fish species analysed in

this drainage was found, although it should be noted that only

strongly competing species are likely to result in strong and significant

segregated patterns. Furthermore, others have found competing spe-

cies to sometimes aggregate rather than segregate, although this was

at a much larger spatial scale (Cordero & Jackson, 2019).

A large portion of nonrandom aggregations (23 pairs) showed no

discernable effect of spatial or environmental factors given the scale

and environmental characteristics considered in this study. Therefore,

the possibility of positive, or facilitative, interactions, but also associa-

tions due to predator prey interactions, driving these associations

remains but should be scrutinized. Seven of these 23 pairs included

two members of the sunfish and black bass family Centrarchidae,

within which individuals display niche flexibility based on size that

often leads to what is referred to as ‘niche packing’ or ‘species pack-
ing’ (Desselle et al., 1978; Werner & Hall, 1976; Werner, 1977). In

effect, these species forage on similar resources, but diverge on the

specific size of the resources targeted. Target prey size is normally

correlated with predator size and mouth morphology, and this allows

for stable coexistence of predators. However, species packing is not

mutually exclusive from facilitation, and there is evidence that
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piscivorous predators using different strategies can benefit from one

another (Eklöv & VanKooten, 2001; Schumann et al., 2020).

An additional seven nonrandom pairs of those showing no dis-

cernable effect of spatial or environmental factors consisted of just

one member of the Centrarchidae family plus a nonsunfish member

(the other member being a minnow Leuciscidae in five of those cases).

This may be explained, in part, by spawning nest associations

(Johnson & Page, 1992; Peoples & Frimpong, 2016; Wallin, 1989).

Members of the sunfish family make large nests by clearing depres-

sions in stream-bottom substrate, which are often used by other spe-

cies (Johnston, 1994a; Ross, 2013), and benefit from the protective

parental care of the nest-builder and not necessarily the physical envi-

ronment of the nest (Johnston, 1994b). Examples exist of minnow

species parasitizing centrarchid nests, sometimes even predating

largely on the hosts eggs (Fletcher, 1993) or otherwise lowering host

fitness through fungal infection of its brood (Shao, 1997). All species

in this group of seven pairs show strong overlap in spawning season

(April–August in this region), and two of the species have been

reported laying eggs in sunfish nests: Cyprinella lutrensis and Lythrurus

umbratilis (Robison & Buchanan, 2020 and references therein). Any of

these pairs not engaged in nest association could possibly represent a

predator–prey interaction between the larger Centrarchid predator

and smaller prey species (Hoeinghaus et al., 2007). Additional data

would be required to parse these alternative possibilities, along with

the potential effect of unmeasured environmental factors.

Campostoma spp. and Etheostoma radiosum is an interesting asso-

ciation recovered here because these species were significantly aggre-

gated in three of four models across both sampling periods (indicating

a reliable association), and yet could never be associated with dispersal

limitation or habitat filtering. Campostoma spp. occurred in 16/33 sam-

ples (1974) and 22/33 samples (2014). E. radiosum occurred in 19/33

samples (1974) and 21/33 samples (2014). These two co-occurred

together in 13 and 18 samples in 1974 and 2014, respectively. This

result suggests a facilitative relationship between Campostoma spp.

and E. radiosum may exist. Campostoma spp. are benthic, algivorous

minnows that forage in shoals of up to 1,000 individuals (Matthews

et al., 1987) and can have important effects on other trophic levels

within their communities, such as producers and decomposers (Power

et al., 1985; Veach et al., 2018). Grazing fish like Campostoma can also

promote the downstream drift of macroinvertebrates by disturbing

substrate and causing these organisms to enter the water column.

Matthews et al. (1987) discussed the potential for Campostoma to have

positive interactions on other fish by improving feeding opportunities

for macroinvertebrate predators through substrate disturbance and

provided anecdotal evidence of an association between duskystripe

shiner Luxilus pilsbryi (Fowler 1904) and Campostoma that often

occurred in the same pools together, as observed during snorkelling

surveys. A similar association has been reported between Campostoma

anomalum and hornyhead chub Necomis biguttatus (Kirtland 1840)

(Gorman, 1988). Various suckers Catostomidae are known feeding

facilitators that have a similar feeding mode that involves disturbing

substrate (Pflieger, 1975; Reighard, 1920) as well as various other spe-

cies of freshwater fish (Arnhold et al., 2019; Ross, 2013). Therefore, it

is possible that large shoals of foraging Campostoma disturb substrate

and force more macroinvertebrates into the water column which then

drift downstream into riffles occupied by darters, like E. radiosum, that

benefit from higher abundance of food. This is an intriguing hypothesis

that deserves future consideration, as the importance of large

populations of algivorous grazers is appreciated by fish ecologists

(Matthews et al., 1987), but perhaps not fully understood.

4.3 | Inconsistency through time

Similarity in the species associations recovered across sampling cam-

paigns was low (only five consistent associations). Species interactions

may be expected to change over time due to both species turnover

and ‘rewiring’ of interactions (Brimacombe et al., 2020). Species may

associate only transiently (Bart, 1989; Grossman & Ratajczak, 1998),

seasonally (Gido & Matthews, 2000; Matthews & Hill, 1980) or over

long periods of time (Matthews & Marsh-Matthews, 2016; Mat-

thews & Matthews, 2002; Ross et al., 1985). Species associations may

shift over time due to many nonmutually exclusive factors, including

environmental change, population movement and demographic shifts,

and local extinctions, all of which are all scale-dependent processes

(Blanchet et al., 2020; Chafin et al., 2019; Harmon et al., 2009).

A previous comparison of fish assemblage structure in the Muddy

Boggy River drainage over the same period measured high temporal

turnover at the local spatial scale (i.e., sampling locality) (Zbinden,

2020). This and the similarity in season among the two sampling cam-

paigns might suggest the importance of turnover as opposed to inter-

action rewiring (Brimacombe et al., 2020) for explaining the low

similarity in species association through time. As Lavender et al.

(2019) showed, changes in species incidence can affect the ability of

these tests to determine nonrandom interactions. These authors cau-

tioned against comparing tests among sampling times or experimental

treatments because of this reason. I take this point; however, I would

argue not against comparison, but for more interest in similarities

rather than differences. For the study presented here, many dissimi-

larities were found between sampling times and some of these may

be due to changes in local incidences over time, among a host of other

factors. However, nonrandom associations that persist through time

(as discussed above) provide stronger and more reliable evidence for

two species associating.

4.4 | Complimentary frameworks

The two co-occurrence frameworks used here appear to complement

each other well because each provided unique associations not identi-

fied by the other. The PRF and NMF both aim to identify non-

randomly associated species pairs, but they differ in statistical

approach. Null model approaches with Bayes corrections had one of

the lowest Type I error rates among co-occurrence methods, but con-

sistently failed to detect known associations from simulated data in a

study of co-occurrence methods (Lavender et al., 2019). The PRF
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model (Veech, 2013) used here actually performed best overall with

regard to both error rates in that same comparison (Lavender et al.,

2019). Therefore, it was expected a priori that the NMF would result

in fewer significant associations compared to the PRF, and indeed this

was the case. Lavender et al. (2019) also found that negative (segre-

gated) associations had lower Type I and higher Type II error rates.

Generally, null methods seem to be more robust tests of negative

associations, while probabilistic methods are more robust tests of pos-

itive associations. The findings here are also consistent with this result

as there were many more aggregated than segregated pairs.

Despite low Type I error, the methods used here must be inter-

preted with caution. For example, this study analysed 276 unique spe-

cies pairs and given an error rate of �0.01, it is possible that

approximately three or fewer of the significantly nonrandom pairs

were false positives. Future studies could also reduce error rate by

only analysing species hypothesized a priori to have an association

(e.g. Campostoma spp. and Etheostoma spp.), or by reducing the set to

include only certain species of interest (e.g., species of conservation

concern, species within families or known predator/prey species).

4.5 | Conclusion

Different species can associate or interact in many ways, and methods

exist for inferring associations and underlying mechanisms from inci-

dence data (e.g., co-occurrence frameworks). However, these methods

have received much criticism despite their recent resurgence in the lit-

erature. Co-occurrence frameworks for identifying nonrandomly asso-

ciated species pairs (e.g., aggregated or segregated pairs) should be

used as heuristic tools for sharpening hypotheses concerning fish

ecology (Silknetter et al., 2020). The data presented here demonstrate

that at least some species associations can be found in even a small

number of samples. Roughly half of these associations were driven by

nonbiotic processes (e.g., habitat filtering) and most associations did

not show a consistent signal through time.

All the significant associations from this study can be explored

further. Out of 276 possible associations, there were 54 that showed

a nonrandom pattern. These can further be prioritized based on the

number of models or times they were significant. These frameworks

can provide insight into the broader mechanisms of species assembly

and point to potentially interesting species interactions (out of many

possible interactions). Rather than a weakness, the heuristic nature is

the strength of such methods and can help guide biologists toward

better questions by employing relatively cheap diversity survey data,

which are often already in hand, to reduce complex interaction net-

works down to their nonstochastic parts. This can save fisheries biolo-

gists time and resources and help guide us toward species

associations that warrant further investigation. In turn, this can lead to

a fuller understanding of how fish assemblages are structured.
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