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stream fish diversity—across a region and within four 
drainages. We found that total dissimilarity was more 
explained by replacement than nestedness. Fish diver-
sity was governed by spatial and environmental fac-
tors, although the degree depended on the diversity 
facet and drainage. Adjusted R2 for combined models 
(i.e., spatial plus environment) of fish beta diversity 
was as high as 0.65. Local instream habitat variables 
were the most explanatory factors. Spatial factors 
based on overland Euclidean distance and asym-
metric (directional) distance revealed more explana-
tory power than symmetric hydrologic distance. The 
purely spatial variation was often as high as 33% 
explained. Multiple facets were strongly correlated 
and provided similar results—albeit some differences 
arose, especially within different drainages; these dif-
ferences highlight how difficult it is to generalize the 
multifaceted approach. However, the importance of 
exploring spatial models for determining the role of 
spatial processes on community assembly cannot be 
overstated.

Keywords Asymmetric eigenvector maps · 
Dispersal limitation · Environmental filtering · 
Species replacement · Upstream dispersal · Variation 
partitioning

Abstract Our understanding of the factors deter-
mining stream community assembly has mainly been 
built upon taxonomic diversity. Additionally, most 
investigations of factors governing assembly are lim-
ited in scope and use of spatial model testing. There-
fore, we combine a sizeable environmental dataset 
(local and landscape level) with robust spatial analy-
sis to model the factors determining multiple facets of 
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Introduction

Conservation and management of biodiversity rely on 
understanding the factors and processes responsible 
for creating and maintaining assemblages of species 
(López‐Delgado et  al., 2020). Additional facets—or 
dimensions—of biodiversity can provide complemen-
tary information about the factors that structure com-
munities (Pavoine & Bonsall, 2011; Nakamura et al., 
2020). Nevertheless, much of our understanding of 
community assembly has relied solely on taxon diver-
sity (TD), based on species abundance or incidence, 
while largely neglecting other facets (Pool et  al., 
2014; Mori et  al., 2018). Taxon diversity does not 
account for evolutionary and ecological species rela-
tionships, and therefore, it fails to encompass essen-
tial pieces of the natural puzzle (Cardoso et al., 2014; 
Heino & Tolonen, 2017; Roa-Fuentes et  al., 2019). 
Although additional means of quantifying diversity 
based on functional traits (McNaughton, 1977; Gross-
man et al., 1982) or phylogenetic relationships (Faith, 
1992) have existed for some time, examination of 
more than one facet of diversity within a single study 
has only recently increased in popularity (Webb et al., 
2002; Meynard et al., 2011; Branco et al., 2020). Still, 
most community assembly studies in freshwater sys-
tems exclusively focus on TD (Perez Rocha et  al., 
2018; Hill et al., 2019).

Functional diversity (FD) represents the unique 
morphological, physiological, and ecological traits 
present within a community (Pool et  al., 2014). FD 
differs less among localities than TD due to func-
tional redundancy (Villéger et al., 2012, 2013). How-
ever, because species traits often mediate environ-
mental filtering, FD is predicted to be more closely 
related to environmental factors and, therefore, can 
better illuminate abiotic relationships with commu-
nity structure (Poff, 1997; Mori et al., 2018). Phylo-
genetic diversity (PD) represents the unique evolu-
tionary history present within a community (Faith, 
1992). PD can provide additional insights into how 
evolutionary processes structure contemporary com-
munities (Webb et  al., 2002). For example, environ-
mental filtering may drive co-occurrence among 
closely related species with similar characteristics, 
tolerances, and preferences. However, competitive 
interactions among those same species place con-
straints on coexistence (Mayfield & Levine, 2010; 
Geheber & Geheber, 2016; Geheber, 2019).

Compared to TD, FD and PD measures show fewer 
limitations when quantifying and comparing diversity 
across large spatial scales (Perez Rocha et al., 2018). 
The reason is that both FD and PD are not as sensi-
tive as TD to dissimilarity saturation—when com-
munities have maximum dissimilarity due to a lack of 
shared species (Tuomisto et  al., 2012). Dissimilarity 
saturation occurs when sampling over long ecological 
or spatial gradients. However, even in the absence of 
shared species, communities can still overlap in evo-
lutionary history (e.g., shared families) and function-
ality (e.g., piscivores and detritivores) (Brown et al., 
2017). Consequently, the utility of these additional 
facets of biodiversity depends on the spatial extent of 
investigation (Legendre, 2014). TD is least practical 
at large spatial scales at which species pools totally 
differ. At such scales, PD and FD may prove more 
useful. Evidence suggests that multiple facets of bio-
diversity may be more complementary at lower than 
higher latitudes (Stevens & Tello, 2018); this may 
suggest that TD alone—at appropriate scales—is a 
suitable metric for the study and conservation of tem-
perate stream systems.

Identifying extrinsic factors that correlate with pat-
terns of community structure and diversity is a sig-
nificant ecological pursuit and a primary step towards 
a complete understanding of assembly mechanisms 
and ecological dynamics (Vellend, 2010; Leibold 
& Chase, 2018). Diversity measures are often cou-
pled with environmental and spatial characteris-
tics to parse the effects of local and landscape-level 
abiotic factors, spatially structured abiotic factors, 
and purely spatial factors on community structure 
(Legendre et  al., 2005). These associations—or lack 
thereof—are presumed to support different underly-
ing mechanisms: environmental filtering, dispersal 
limitation, or stochasticity (Cottenie, 2005; Lei-
bold & Chase, 2018). Although diversity variation 
explained by purely spatial factors—after accounting 
for the environment—is typically used to infer dis-
persal limitation, it should be noted that unmeasured 
environmental variation can also drive such a pattern 
(Landeiro et al., 2011). In addition, the strength of the 
relationships among geographic variation of commu-
nity structure and environmental and spatial factors 
is often used to infer metacommunity-level processes 
(Leibold et  al., 2004), although the predictions for 
the fundamental archetypes (e.g., Neutral Theory; 
Species Sorting; Patch Dynamics; Mass Effects), are 
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not often well defined or mutually exclusive (Leibold 
& Chase, 2018). More studies across taxa, systems, 
and spatial scales are needed to determine the value 
of studying additional facets of diversity (Stevens & 
Tello, 2018).

Investigations that aim to partition variation 
among spatial and environmental predictors typi-
cally use spatial eigenfunction analysis (Griffith & 
Peres-Neto, 2006) to decompose a matrix of spatial 
sampling configuration (e.g., pairwise Euclidean dis-
tance among sites) into eigenvectors which can be 
used to model latent spatial processes such as disper-
sal limitation (Borcard & Legendre, 2002). However, 
Euclidean distance is usually deemed inappropriate 
for modeling spatial processes for stream obligate 
species; therefore, hydrologic network distance (i.e., 
river distance or watercourse distance) is typically 
used instead (Fetzner & Crandall, 2003; Landeiro 
et al., 2011). However, other methods may better por-
tray the unique spatial structure of stream networks 
because they consider both the network position and 
directional processes such as flow direction (Blan-
chet et al., 2008a) and might more robustly infer the 
effects of dispersal limitation (Landeiro et al., 2011).

The present study aimed to determine if multiple 
facets of diversity provide complementary infor-
mation regarding stream fish assemblage structure. 
To better understand species assembly, beta diver-
sity facets were partitioned into species replace-
ment (i.e., turnover) and nestedness components 
(Baselga, 2010). Replacement is indicated when 
species substitutions occur between different sites, 
presumably due to environmental filtering (Nunes 
et  al., 2016; Heino & Tolonen, 2017), and nested-
ness occurs when less speciose sites are subsets of 
more speciose ones (Baselga, 2010); it is related 
to stochastic dispersal or colonization–extinction 
dynamics along gradients (Taylor & Warren, 2001; 
Si et al., 2016). The relative importance of replace-
ment and nestedness also relies on the degree of 
environmental heterogeneity and dispersal (Gianuca 
et al., 2017; Zeni et al., 2020). For example, no nest-
edness is expected in an entirely homogenous sys-
tem, as no directional species loss should be found 
in the absence of environmental gradients (Gianuca 
et al., 2017). However, in environmentally heteroge-
neous systems, nestedness is expected to depend on 
the degree of dispersal between environments, with 
higher dispersal leading to more homogenization 

and less nestedness. Therefore, the contribution 
of each component to total dissimilarity can aid in 
identification of the underlying mechanisms driving 
assembly. Generally, species replacement contrib-
utes much more than nestedness to overall dissimi-
larity, as shown across taxa and regions (Soininen 
et al., 2018; Branco et al., 2020).

To further explore potential assembly mecha-
nisms, we also examined the relative influences of 
spatial and environmental factors on observed fish 
diversity. Specifically, this approach allows fur-
ther elucidation of the strengths of habitat filtering 
and dispersal limitation mechanisms. To this end, 
we employ a robust set of environmental predic-
tors in combination with tests of 10 unique spatial 
models that go beyond pairwise hydrologic dis-
tance, some of which include asymmetric network 
processes (i.e., upstream/downstream dispersal). 
These models employ directional processes (i.e., 
flow direction) that affect spatial patterns of com-
munity organization and can better estimate the role 
of spatial processes in structuring lotic communities 
(Horváth et al., 2016).

Our overarching goal was to examine relationships 
among abiotic factors (i.e., spatial and environmental 
factors) and facets of diversity to understand observed 
patterns of community structure and processes gov-
erning assembly. To approach this goal, we aimed 
to test the following hypotheses: (i) dissimilarity 
among fish assemblages (i.e., beta diversity) would be 
driven more by species replacement than nestedness 
due to environmental and spatial filtering; (ii) spa-
tial and environmental factors should explain facets 
of stream fish diversity; however, environmental fac-
tors should have a relatively stronger influence due to 
the predominance of local environmental filtering at 
the spatial scale sampled; (iii) environmental factors 
should be most influential for describing variation 
in FD and PD based on the assumption that species 
functionality and evolutionary histories are directly 
impacted by environmental conditions. In addition to 
our hypotheses, we set out to demonstrate the efficacy 
of using more appropriate spatial models for fluvial 
networks to capture greater signal of significant spa-
tial processes than has been typically observed in past 
studies of this kind. Tests of the hypotheses above 
will provide a more complete understanding of how 
fish assemblages vary across streams and watersheds 
needed to inform conservation and management.
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Materials and methods

Study area

This study was conducted in four temperate river 
drainages in the Red River Basin, Oklahoma, USA: 
Clear Boggy River, Muddy Boggy River, Kiamichi 
River, and Little River (Fig. 1). The sampling extent 
was approximately 100 km (latitudinally) by 200 km 
(longitudinally) and covered an area of approximately 
16,500  km2. The area encompassed three distinct 
ecoregions, including the cross timbers region (west), 
the south-central plains (south), and the highland 
region of the Ouachita Mountains (east). The west-
ern and southern parts of the study region are lower 
elevation (min. = 101  m a.s.l.). In comparison, the 

eastern and northern parts are at higher elevation 
(max. = 753  m a.s.l.) and more topographically rug-
ged. The region is rural and dominated by forests and 
cattle pastures. Human impact is relatively low, but 
parts of the eastern drainages (Kiamichi and Little 
Rivers) are intensely managed for commercial timber 
(Taylor & Lienesch, 1996).

The sampled stream reaches were concentrated 
in the highland regions and primarily small, shallow 
(mean max depth = 1.2  m; mean max width = 10  m) 
headwater streams (stream order = 1–3). These 
warm-water streams had moderate summer tem-
peratures (mean = 25.6  °C) and dissolved oxygen 
(mean = 9.0  ppm). Streams varied from being clear, 
high gradient, and shaded tributaries in highlands 
to turbid, low gradient mainstems in the lowlands. 

Fig. 1  Map of 138 freshwater fish collections analyzed in this 
study. Locations were chosen haphazardly and with the intent 
of providing maximum spatial coverage across each drainage. 
The Muddy Boggy River, Clear Boggy River, Kiamichi River, 

and Little River are tributaries of the Red River located in 
southeastern Oklahoma, USA. Neighboring states Oklahoma 
(OK), Arkansas (AR), and Texas (TX) are shown for reference
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Generally, stream reaches had riffle-pool-run habi-
tats, and substrates were dominated by mud, sand, 
or gravel. Riparian areas were commonly covered 
in water willow and spike rushes and usually highly 
vegetated with large trees. Floating and submerged 
vegetation was present but less common.

Predictor data

Environmental predictor data

At each sampling location, 23 variables were meas-
ured along the stream reach (instream variables 
hereafter). These variables included: the size of the 
stream (depth (m) and width (m) recorded at the 
maximum); the proportion of habitat types present 
(pool, riffle, channel, and backwater); dissolved oxy-
gen (mg/l; measured using a Horiba Water Quality 
Monitor model U-5000, Alvin, TX.); relative current 
velocity (none; slow < 15  cm/s; medium < 30  cm/s; 
fast > 30 cm/s); the proportion of substrate types pre-
sent (mud, sand, gravel, cobble, bedrock) (Simonson 
et  al., 1993); incidence of structure types (filamen-
tous algae, macrophytes, submerged structure, coarse 
woody debris, boulders); and riparian characteristics 
(bank incision, incidence of bank stability, pasture, 
and woodland) (Marsh-Matthews & Matthews, 2000).

Landscape-level environmental attributes were 
assigned to each sampling location using data made 
available by HydroATLAS version 1.0 at 15 arc-
second (~ 500 m) resolution (Linke et al., 2019). The 
total data consisted of 281 individual attributes for 
56 variable types across five categories, including 
hydrology–physiography, climate, land cover, geol-
ogy, and anthropogenic influences (See Supplemen-
tary S1 & S2 for more information). The associated 
RiverATLAS v.10 shapefile for North America was 
imported into ArcMap (ESRI v.10.8), trimmed, and 
then exported as a shapefile. Sampling location data 
were also imported into ArcMap and exported as a 
shapefile. Both files were projected using NAD 1983 
(2011) Contiguous USA Albers projection. These 
shapefiles were imported into R to join the river data-
base attributes to the sampling locations and instream 
data using the R package ’sf’ (Pebesma, 2018).

The instream and landscape-level variables were 
joined for a total of six categories characterizing each 
site: instream, hydrology/physiography, climate, land 
cover, geology, and anthropogenic variables. Invariant 

factors were removed. Principal Component Analy-
sis (PCA) was computed for each of the six envi-
ronmental sets separately. Prior to PCA, the number 
of variables for each category were: instream = 23, 
hydro-physio = 31, climate = 92, landcover = 49, geol-
ogy = 27, anthropogenic = 14. First, highly collinear 
variables within a set were removed by calculat-
ing variation inflation factors (VIF; Fox & Monette, 
1992). In a stepwise manner, variables with VIF ≥ 10 
were removed using the R package ‘usdm’ (Naimi, 
2013). The appropriate number of PCs retained for 
each group was determined via the randomization 
method based on significant pseudo-F ratios, Rnd-F 
(Peres-Neto et al., 2005) implemented in the R pack-
age ‘PCDimension’ (Coombes et al., 2019). Principal 
components were computed for each of the six envi-
ronmental sets using the R function ‘prcomp’ with 
standardization, scaling, and default settings. Six sets 
of environmental PCs were retained. After prelimi-
nary analyses, two sites were outliers (> 3 standard 
deviations than PC mean) and removed before repeat-
ing the analyses.

Spatial predictor data

We compared ten different models of spatial autocor-
relation (Fig. 2). All models resulted in spatial eigen-
vectors either via distance-based Moran’s eigenvector 
map analysis (dbMEM; Dray et  al., 2006) or asym-
metric eigenvector map analysis (AEMs) (Blanchet 
et  al., 2008a). MEMs and AEMs represent spatial 
structures in the data ranging from broad to fine scale.

Standard symmetric spatial models 1 and 2

The first spatial model (MEM_LAND) was simply 
the Euclidean distance among sampling locations 
which was decomposed into spatial eigenvectors via 
function ‘dbmem’ from the R package ‘adespatial’ 
(Dray et  al., 2018). Only positive spatially autocor-
related eigenvectors were retained for further analy-
sis. Model 2 (MEM_HYDRO) differed from Model 
1 only because it was based on hydrologic network 
(river) distance instead. The spatial join between the 
RiverATLAS and Site shapefiles was used to meas-
ure the fluvial distance between all sites using the 
‘riverdist’ R package (Tyers, 2017). This distance 
matrix was then transformed into a rectangular matrix 
of spatial eigenvectors as with Model 1 (Fig. 2). The 
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threshold for truncating the distance matrix was the 
longest edge of the minimum spanning tree among 
sites (as was the case for all MEM models).

Mixed spatial models 3 and 4

The remaining models are all asymmetric with 
respect to flow direction so that upstream and down-
stream distances are not treated equally. This can help 
determine if asymmetric dispersal occurs (e.g., dis-
persal biased downstream with the current). Essen-
tially, the flow direction is used to weight distances 
as a means of modeling resistance to dispersal (e.g., 
Mozzaquattro et al., 2020). The following two mod-
els differed from Model 2 in calculating the distance 
along the river network. These models incorporated 
flow direction along the stream network to differen-
tiate between downstream and upstream distances 
(Fig.  2). This distance was calculated using the 
’upstream’ functions from the R package ’riverdist’ 
(Tyers, 2017). Downstream distances were weighted 
negative (i.e., reducing distance), while upstream 

distances were weighted positive (i.e., increasing dis-
tance). Models 3 and 4 differed only slightly because 
Model 3 measured ‘net’ upstream distance or the dif-
ference between up and downstream totals. Model 4 
measured ‘total’ upstream distance. Total network 
distance (Model 4) was similar to basic hydrologic 
(Model 2) distance, except the distances had a sign 
depending on the net direction (± ; upstream/down-
stream). The ‘upstream’ distance matrices for Models 
3 and 4 were then decomposed into spatial eigenvec-
tors using the same procedure as with Models 1 and 
2 (Fig. 2).

Asymmetric models 5 to 10

The remaining models were all based on Asymmet-
ric Eigenvector Map analysis (AEM; Blanchet et al., 
2008a, b). AEM was similar to dbMEM in that it gen-
erated a rectangular set of spatial eigenvectors that 
represented the spatial autocorrelation among sam-
pling locations. AEM, however, included directional-
ity in the model so that processes like dispersal from 
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Fig. 2  Spatial autocorrelation of fish diversity was examined 
across a riverscape in southeastern Oklahoma. Ten models of 
spatial connectivity were compared. These models are illus-
trated with a simple three-collection site example. Sites are 

denoted as red circles with numbers, and the stream network is 
denoted with blue lines, and distances are denoted with dashed 
lines, where appropriate. Each method results in a spatial 
matrix which is decomposed to a series of spatial eigenvectors
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mainstems to tributaries (tail-down) or direction-
ally biased dispersal mediated by flow (tail-up) were 
more accurately modeled. AEM analysis required 
the geographic coordinates of sampled locations and 
a file containing information about which sites were 
directly linked by the river network (Blanchet et  al., 
2011; López-Delgado et  al., 2019). We used the 
AEM-related functions in the R package ‘adespatial’ 
(Dray et  al., 2018) to build the spatial matrices and 
decompose them into spatial eigenvectors.

Tail-down models are related to processes that 
point upstream (Ver Hoef & Peterson, 2010), such as 
dispersal from mainstem rivers to tributary streams, 
and this includes our spatial Models 5, 6, and 7. 
The ‘adespatial’ function aem.build.binary was used 
with site coordinates and links with a ‘rot.angle’= 0 
degrees because our network flows from north to 
south and the function infers process from the bottom 
to the top of the plot area where the network is visu-
alized. The model adds a site to the connection dia-
gram; it serves as the origin of the spatial process that 
flows through the network. For the tail-down models, 
we added two additional nodes to the network, one at 
the confluence of the Muddy Boggy and Red River 
and another at the confluence of the Kiamichi River 
and Red River (Fig. 2). These nodes served to repre-
sent the spatial network better and were removed after 
calculating the eigenvectors. Tail-down asymmetric 
eigenvectors were calculated as described above and 
without weighting the spatial site by edge matrix 
for Model 5 (AEM_TDN_UW). Two additional and 
similar models were calculated that were weighted 
based on the presence of dams for Model 6 (AEM_
TDN_DAM) or distance for Model 7 (AEM_TDN_
DIST). For all AEMs, only positive eigenvectors were 
retained; this was determined by calculating Moran’s 
I statistic and selecting only the eigenvectors with I 
greater than that expected by chance using the func-
tion ‘moran.randtest’ from the R package ’adespatial’ 
(Dray et al., 2018).

Tail-up models point downstream and indicate 
downstream biased dispersal, presumably due to the 
flow of stream current (Ver Hoef & Peterson, 2010). 
Models 8, 9, and 10 are all tail-up models and were 
calculated using the same procedure as the tail-down 
models described above, but with minor differences. 
First, the ’rot.angle’ was set to 180 degrees so the 
spatial process would be modeled upstream to down-
stream. An additional site was added to the connection 

diagram at an arbitrarily chosen location upstream 
of all other sites and centrally located; this site was 
then connected to all terminal branches in the net-
work. The origin site was then attached to this single 
most upstream site so that the flow of current could 
be modeled through the network. An unweighted 
Model 8 (AEM_TUP_UW), a dam-weighted Model 9 
(AEM_TUP_DAM), and a distance-weighted Model 
10 (AEM_TUP_DIST) were produced. Again, only 
positively autocorrelated eigenvectors were retained.

Fish species data

The sampling approach used here is detailed in Mat-
thews (1986) and Matthews & Marsh-Matthews 
(2017). The goal of community sampling is to take 
all species present in proportion to their relative 
abundances. Fish collections were made between 
May and July in 2014 and 2015 when flows were low 
and most amenable to wading. One hundred fifty-
one locations were sampled and chosen haphazardly 
based on access and to provide maximum spatial 
coverage of the study drainages. Sampling consisted 
of thoroughly seining all available microhabitats 
present (e.g., pool, riffle, channel, edge, etc.) within 
a stream reach approximately 100 m in length. Indi-
vidual microhabitats were repeatedly seined until an 
adequate sample representing the species and their 
relative abundances were obtained (i.e., additional 
hauls produced ‘more of the same species’) (Mat-
thews & Marsh-Matthews, 2017). Channels and pools 
were sampled by pulling seines downstream, while 
riffle and edge habitats were sampled by kick sein-
ing. Depending on the stream’s width (min = 2  m; 
max = 40 m; mean = 10 m), either one or both of two 
seine nets were used (4.57  m × 1.22  m × 4.88  mm 
mesh and/or 2.44  m × 1.22  m × 4.88  mm mesh). 
Sampling times varied depending on the size of the 
stream (mean sampling time was 46  min) and con-
sisted of 25–50 seine hauls. Our sampling approach 
had yielded highly similar numbers of individuals and 
species when the same stream reaches were repeat-
edly sampled over time (Matthews & Marsh-Mat-
thews, 2017; Zbinden et  al., 2022). Specimens were 
preserved in 10% formalin and identified to species in 
the laboratory. Specimens were archived in the Sam 
Noble Oklahoma Museum of Natural History, Nor-
man, Oklahoma. All collections were made under 
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protocols approved by the IACUC of the University 
of Oklahoma (R14-002).

Before analyses, a species by site matrix was 
modified to remove rare species (Ross et  al., 1985). 
First, nine species were removed from the matrix 
that were large-bodied species not sampled consist-
ently with seine nets, for example, gar (Lepisosteus 
spp. Lacepède, 1803), freshwater drum (Aplodinotus 
grunniens Rafinesque, 1819), and smallmouth buf-
falo [Ictiobus bubalus (Rafinesque, 1818)]. Second, 
13 species were removed that were collected at < 3 
sites. Third, sites were removed from the matrix if 
they contained < 5 total collected species (N = 13). 
These sites mainly were isolated springs or backwa-
ter sloughs. The justification for treating the data in 
this way was to ensure all sites included were part of 
the river network and that the species included were 
those best sampled by our collecting methods (Ross 
et al., 1985; Poos & Jackson, 2012). Therefore, these 
modifications should reduce variation due to sam-
pling error.

Functional data

A set of 15 functional fish characteristics was com-
piled using the Fishtraits database (Frimpong & 
Angermeier, 2009) and additional literature (e.g., 
Miller & Robison, 2004; Robison & Buchanan, 2020). 
The set included seven trophic ecology traits based on 
feeding: benthic, surface, algae, macrophyte, detri-
tus, piscivore, and eggs. A species received a value 
of 0 (‘no’) for each trait unless it has been reported 
otherwise in the literature for adult individuals at any 
time over the species’ range (Frimpong & Anger-
meier, 2009). Otherwise, the value was 1 (‘yes’). 
The remaining eight variables were maximum total 
length, age at maturity, longevity, fecundity, spawn-
ing frequency, spawning season length, and minimum 
and maximum temperature tolerance (Frimpong & 
Angermeier, 2009 and references therein). These 
variables were chosen following others who relied 
on similar size, life history, and trophic-related char-
acteristics to quantify fish functional diversity (Pool 
et al., 2014; Burgad et al., 2019).

The dimensionality of functional trait data was 
reduced using non-metric multidimensional scal-
ing on Gower distances among species based on trait 
data standardized to a mean of zero and one stand-
ard deviation. NMDS was performed with function 

‘metaMDS’ (without transformation) in the R pack-
age ‘vegan’ with four axes and 1,000 starts. The 
solution was constrained to four dimensions because 
subsequent functional diversity analyses are limited 
to n-1 functional dimensions where n is the mini-
mum number of species in any site (as mentioned 
above, we removed sites with less than five species). 
This constraint led us to choose NMDS over princi-
pal coordinates analysis (PCoA = metric multidimen-
sional scaling), typically used for functional diversity 
analyses of this kind (Villéger et al., 2008). NMDS is 
designed to provide the most reliable solution relative 
to the actual distances in a given number of dimen-
sions (Legendre & Legendre, 2012). Stress plots of 
observed dissimilarity vs. ordination distance were 
compared for both NMDS and PCoA, and NMDS 
resulted in a better fit.

Phylogenetic data

A phylogenetic hypothesis of the study species was 
obtained using a previously assembled time-cal-
ibrated tree of ray-finned fishes based on a 27-gene 
multi-locus alignment (Rabosky et  al., 2018). The 
backbone tree was subset to a phylogram representing 
character change limited to the species collected in 
this study using the R package ‘fishtree’ (Chang et al., 
2019). The phylogeny is provided in the Supplemen-
tary Material (S3). Derivation of phylogenetic alpha 
and beta diversity are explained below.

Response data

Alpha diversity

Three facets of stream fish alpha diversity were cal-
culated, used to model the contribution of spatial and 
environmental predictors, and finally used to partition 
diversity variation among spatial and environmen-
tal sets. This procedure was done for each drainage 
independently and for the whole region. Taxon alpha 
diversity (TDα) was the number of species found at 
a given site. Functional alpha diversity (FDα) was 
calculated based on the convex hull volume of func-
tional space occupied by species assembled at each 
location. The metric quantified for functional alpha 
diversity was functional richness, or the proportion of 
total functional space occupied by each assemblage 
(Villéger et  al., 2008). The function multidimFD 
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(http:// ville ger. sebas tien. free. fr/ Rscri pts. html) was 
used to calculate the functional richness of each 
assemblage. Phylogenetic alpha diversity (PDα) was 
calculated based on the sum of the total phylogenetic 
branch length of the species present within a given 
site (Faith, 1992). We used the function ‘pd’ in the R 
package ‘picante’ (Kembel et al., 2020), together with 
the fish phylogeny and fish incidence data described 
above.

Beta diversity

Beta diversity was based on compositional differ-
ences. The same three facets of stream fish beta 
diversity were calculated, used to model spatial and 
environmental predictors, and finally used to partition 
diversity variation among spatial and environmen-
tal sets. This procedure was done for each drainage 
independently and for the whole region. Taxon beta 
diversity was examined using separate analyses on 
species abundance and incidence data. In addition, 
each diversity facet was partitioned into overall dis-
similarity, replacement, and nestedness components 
for a total of 12 separate analyses of stream fish beta 
diversity across the region and within each drainage.

Pairwise beta diversity was calculated and ana-
lyzed independently among all sites across the region 
and within four drainages. Twelve beta diversity 
matrices were produced using the R package ‘beta-
part’ (Baselga & Orme, 2012). Abundance-based 
Taxon Beta diversity (TDβ) was calculated using 
function ‘beta.pair.abund,’ which creates three beta 
matrices: Bray–Curtis dissimilarity (Bray) and its 
additive components Bray Balanced (Bray.Bal) and 
Bray Gradient (Bray.Gra) (Baselga, 2013). Incidence-
based Taxon Beta diversity (TDβ) was calculated 
using function ‘beta.pair’ which creates three beta 
matrices: Sørensen dissimilarity (βsor) and its additive 
components Simpson dissimilarity (βsim) and nested-
ness (βsne). The same was done for both Functional 
Beta diversity (FDβ) and Phylogenetic Beta diver-
sity (PDβ) but only using incidence data (abundance 
based not available in ‘betapart’) with functions 
‘functional.beta.pair’ and ‘phylo.beta.pair’, respec-
tively. Finally, a correlation matrix was constructed 
by calculating the pairwise correlations among each 
of the 12 resultant beta matrices using Procrustes 
analysis, and significance was tested using the Pro-
crustean randomization test (Jackson, 1995).

Statistical analyses

Forward selection of predictors and variation 
partitioning of response

For each vector of alpha diversity (TDα, FDα, and 
PDα) and each matrix of beta diversity (TDβ Abund, 
TDβ Incidence, FDβ, and PDβ), we wanted to quan-
tify variation explained by different environmental 
sets and spatial models. A multiple regression frame-
work was used for modeling the alpha diversity vec-
tors. A distance-based redundancy analysis frame-
work was used for the beta diversity matrices via 
function ‘dbrda’ (McArdle & Anderson, 2001) in the 
R package ’vegan’ (Oksanen et al., 2016). Otherwise, 
the forward selection and variation partitioning pro-
cedures are the same for all response data.

First, for a given diversity response, factors from 
a predictor set (i.e., environmental or spatial) were 
selected using forward selection (Blanchet et  al., 
2008b). The selection proceeded only if the overall 
model, including the response and all factors from a 
set, was significant (α = 0.1). Variables were selected 
if they increased the adjusted R2 of the models, were 
significant (α = 0.05), and the adjusted R2 did not 
exceed that of the overall model. This method has 
been suggested over Akaike information criterion 
(AIC) selection when the objective is to describe pat-
terns as accurately as possible (Bauman et al., 2018; 
Pollice et al., 2020). Selected environmental variables 
from the different categories were combined. Col-
linear variables were removed using the same step-
wise VIF procedure detailed above before variation 
partitioning. The same procedure was employed for 
the significant spatial variables from different models.

Variation for a given diversity response was then 
partitioned among the selected spatial and environ-
mental predictors using partial multiple regression or 
partial distance-based redundancy analysis (Ander-
son & Legendre, 1999). In all cases, this was done 
with the ‘vegan’ function ‘varpart.’ Each fraction of 
explained variation was then tested for significance 
using ANOVA.

Results

The analyzed data set contained 138 fish collections 
from 4 river drainages in southeastern Oklahoma 

http://villeger.sebastien.free.fr/Rscripts.html
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(Fig. 1). We collected 58 freshwater fish species and 
31,743 individuals. Approximately half (47%) of the 
species were collected in all drainages, another 41% 
collected in 2–3, and only 12% were restricted to one. 
Despite differences driven by unique species, the four 
river drainages showed much overlap in fish assem-
blage structure (Supplement S4 to S6).

Functional traits for the 58 fish species were 
dimensionally reduced to 4 NMDS axes (Supplement 
S7). The final stress of the solution was 0.091, and 
the ordination distances were highly correlated with 
the observed Gower distances (non-metric R2 = 0.992 
and linear R2 = 0.914). Phylogenetic relationships of 
the 58 species of fish were all well resolved (Supple-
ment S3). This tree was not monophyletic and was 
used only to calculate phylogenetic diversities.

Spatio-environmental predictors

The six environmental sets were reduced to prin-
cipal components numbering: instream = 3, 
hydro-physio = 3, climatic = 4, land coverage = 6, 

geologic = 2, and anthropogenic = 3 PCs. These fac-
tors varied among the four river drainages with cli-
mate, landcover, and geologic PCs showing a longi-
tudinal trend—eastern and western drainages having 
different positions along PC1 (Fig.  3). Additional 
information regarding components and loadings can 
be found in the Supplementary Material (S8–S13). 
The ten spatial models resulted in separate matri-
ces of eigenvectors representing the spatial structure 
among sampling locations. The number of eigenvec-
tors associated with positive eigenvalues analyzed 
from each of the ten spatial models were as follows: 
MEM_LAND = 44, MEM_HYDRO = 8, MEM_
UPSTR_NET = 32, MEM_UPSTR_TOTAL = 30, 
AEM_TDN_UW = 14, AEM_TDN_DAM = 15, 
AEM_TDN_DIST = 15, AEM_TUP_UW = 24, 
AEM_TUP_DAM = 16, AEM_TUP_DIST = 19.

Alpha diversity across the region

Total species richness across drainages ranged from 
40 to 46 species; total functional richness ranged from 

Fig. 3  Ordinations of prin-
cipal components analysis 
(PCA) of environmental 
factors characterizing the 
fish sampling locations in 
southeastern Oklahoma. 
There are six major groups 
of environmental factors, 
including instream, hydro-
logic/physiographic, cli-
matic, geologic, landcover/
use, and anthropogenic
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0.75 to 0.80 of the total volume; total phylogenetic 
diversity ranged from 10.9 to 13.4 branch lengths. 
The differences in mean alpha diversity among drain-
ages were minor: TDα ranged from 10.5 to 11.8; 
FDα, as a percentage of total volume, ranged from 
0.13 to 0.20; and PDα ranged from 5.9 to 6.3 branch 
lengths (Fig. 4; Supplement 14). For the entire set of 
138 sites analyzed, mean alpha diversities per site 
were as follows: TDα = 11.1 species, FDα = 0.15 of 
total functional volume, and PDα = 6 branch lengths.

Across all 138 sites, variation of both TDα and 
FDα was explained by spatial and environmental 

predictors. PDα was not significantly explained by 
either (Table  1). TDα was better explained by envi-
ronmental compared to spatial factors. These environ-
mental factors were related to instream and landcover 
variables. Although a small proportion of the varia-
tion in TDα was attributed to purely spatial processes, 
the essential spatial predictors were derived from 
the weighted, tail-up, asymmetric models at a broad 
spatial scale (AEM_TU_DIST 1). The overall spatial 
and environmental model explained more variation in 
FDα than TDα, and partitioning suggested a predomi-
nance of purely spatial processes—opposite of TDα. 

Fig. 4  Distributions of 
three facets of stream fish 
alpha diversity from streams 
in southeastern Oklahoma. 
The four major drainages 
are shown separately for 
comparative purposes. The 
distributions are plotted 
as density functions or 
‘ridges.’ Points for each 
alpha value are shown and 
have been ‘jittered’ to cre-
ate visual separation on the 
y-axis. Black lines represent 
the medians
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Again, instream and landcover variables were signifi-
cant, but no significant spatial structure of environ-
mental factors was involved (Table  1). The contrib-
uting spatial factors were derived from the upstream 
distance models (MEM_UPSTR_TOTAL) at broad 
and fine spatial scales (e.g., MEM3 to 32). All 
three alpha diversity facets were strongly correlated 

according to the Spearman’s rank correlation (TDα 
v. FDα ρ = 0.94; TDα v. PDα ρ = 0.84; FDα v. PDα 
ρ = 0.76).

Alpha diversity within drainages

Models of alpha diversity within drainages yielded 
differing results (Table  2). For example, neither of 
the three facets (taxon, functional, phylogenetic) was 
significantly related to environmental or spatial fac-
tors in the Clear Boggy Drainage. Environmental 
factors accounted for some variation across all three 
facets within the Kiamichi Drainage, but the lack of 
significant spatial factors prevented variation parti-
tioning. The opposite was true for TDα in the Muddy 
Boggy Drainage and PDα in the Little River Drainage 
where spatial factors could explain some variation, 
but not environmental ones. Both FDα and PDα were 
explained by environmental and spatial factors within 
the Muddy Boggy Drainage. For both, most of the 
variation was due to the combination of pure and spa-
tially structured environments. A quarter of the vari-
ance was attributed to purely spatial factors derived 
from Euclidean distance models (MEM_LAND). 
Both TDα and FDα were explained by environmen-
tal and spatial factors within the Little River Drain-
age. However, a much more significant proportion 
of variance was explained purely by space (~ 80%). 
The contributing spatial models here were based on 
hydrologic distance (MEM_HYDRO) or asymmetric 
tail-down models, suggesting an influence of down-
stream diversity on upstream assemblages.

Beta diversity across the region

The four drainages showed similar levels of both pair-
wise (Fig.  5) and multi-site (Supplement S14) beta 
diversity across all facets. Replacement contributed 
more to overall dissimilarity than nestedness for all 
beta diversity facets, but the magnitude of the dif-
ference varied by facet (Fig.  5). Abundance-based 
TDβ had the highest pairwise dissimilarity overall, 
and PDβ had the least (Fig. 5). Distributions of inci-
dence-based TDβ and FDβ were more similar over-
all, although that of FDβ was more skewed towards 
higher dissimilarity. Compared to incidence-based 
TDβ, FDβ showed lower levels of replacement and 
higher levels of nestedness (Fig. 5).

Table 1  Combined results of variation partitioning and for-
ward model selection (FWD) of alpha diversity of stream fish 
collected in southeastern Oklahoma

Each facet of alpha diversity (taxon = TDα, functional = FDα, 
and phylogenetic = PDα) was analyzed separately and pre-
sented in each column. Column rows are divided into three 
sections: Variation partitioning results showing the variance 
explained by spatial and environmental components, forward 
model selection results comparing variance explained by the 
six major environmental variable groups (analyzed as principal 
components), and results of multiple linear regression of diver-
sity data and ten spatial models. All table values are adjusted 
R2, and only significant relationships are shown (α = 0.05), 
except for variation partitioning row Shared (B), which is not 
a testable fraction

TDα FDα PDα

Variation partitioning
 Total (A + B + C) 0.14 0.24 –
 Spatial (A + B) 0.09 0.13 –
 Environ. (B + C) 0.12 0.11 –
 Pure spatial (A) 0.02 0.13 –
 Pure environ. (C) 0.05 0.11 –
 Shared (B) 0.06 0.00 –

Environmental (FWD)
 Instream 0.08 0.07 –
 Hydro-physio – – –
 Climate – 0.04 –
 Landcover 0.05 0.06 –
 Geology – – –
 Anthropogenic – – –

Spatial models (FWD)
 MEM_LAND – – –
 MEM_HYDRO – – –
 MEM_UPSTR_TOTAL – 0.07 –
 MEM_UPSTR_NET – 0.11 –
 AEM_TDN_UW – – –
 AEM_TDN_DAM – – –
 AEM_TDN_DIST – – –
 AEM_TUP_UW – – –
 AEM_TUP_DAM 0.07 – –
 AEM_TUP_DIST 0.09 – –
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Across the region and all facets, spatial and envi-
ronmental predictors better explained replacement 
than overall dissimilarity, based on adjusted R2, while 
unable to explain nestedness (Table  3). While mod-
els could account for variance in facets differently, the 
proportion of total explained variance for each facet 
was attributed to largely the same environmental fac-
tors and specific spatial models. Across all facets, var-
iance explained by spatial factors (A + B; ~ 80% total 
variance explained) was higher than environmen-
tal factors (B + C; ~ 70% total variance explained). 
Similarly, the variance explained purely by space 

(A; ~ 33% total variance) was invariably higher than 
that explained purely by environment (C; ~ 20% total 
variance explained). Although spatially structured 
environment (B; ~ 45% total variance explained) was 
greater than pure space. Generally, around half of the 
variance explained by the total model (A + B + C) was 
shared between space and environment (B; Table 3), 
suggesting that much of the environmental factors 
related to beta diversity were spatially structured. One 
exception was the model of FDβsim, where the total 
model explained 40% of the variance and the shared 
variance explained between space and environment 

Table 2  Within drainage results of variation partitioning and forward model selection (FWD) of alpha diversity of stream fish col-
lected in southeastern Oklahoma

Each facet of alpha diversity (taxon = TDα, functional = FDα, and phylogenetic = PDα) was analyzed separately and presented in 
each column. Rows are divided into three sections: Variation partitioning results showing the variance explained by spatial and 
environmental components, forward model selection results comparing variance explained by the six major environmental variable 
groups (analyzed as principal components), and results of multiple linear regression of diversity data and ten spatial models. All 
table values are adjusted R2, and only significant relationships are shown (α = 0.05)

Alpha diversity

Clear Boggy Muddy Boggy Kiamichi R Little R

TDα FDα PDα TDα FDα PDα TDα FDα PDα TDα FDα PDα

Variation partitioning
 Total (A + B + C) – – – – 0.48 0.43 – – – 0.28 0.37 –
 Spatial (A + B) – – – – 0.41 0.28 – – – 0.24 0.34 –
 Environ. (B + C) – – – – 0.36 0.36 – – – 0.06 0.05 –
 Pure spatial (A) – – – – 0.12 0.10 – – – 0.22 0.32 –
 Pure environ. (C) – – – – 0.08 0.15 – – – 0.04 0.03 –
 Shared (B) – – – – 0.28 0.19 – – – 0.02 0.02 –

Environmental (FWD)
 Instream – – – – – – 0.08 – – 0.06 0.05 –
 Hydro-physio – – – – – – 0.18 0.27 0.09 – – –
 Climate – – – – – – – – – – – –
 Landcover – – – – 0.36 0.21 – – – – – –
 Geology – – – – – 0.09 – – – – – –
 Anthropogenic – – – – – – – – – – – –

Spatial models (FWD)
 MEM_LAND – – – 0.29 0.41 0.28 – – – – – –
 MEM_HYDRO – – – – – – – – – 0.08 0.21 –
 MEM_UPSTR_TOTAL – – – – – – – – – – – –
 MEM_UPSTR_NET – – – – – – – – – – – –
 AEM_TDN_UW – – – – – – – – – 0.14 – 0.11
 AEM_TDN_DAM – – – – – – – – – – 0.07 –
 AEM_TDN_DIST – – – – – – – – – 0.16 0.15 0.07
 AEM_TUP_UW – – – 0.13 – – – – – – – –
 AEM_TUP_DAM – – – – – – – – – – – –
 AEM_TUP_DIST – – – – – – – – – – – –
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(B) was 9%. Models of incidence-based TDβ and 
PDβ explained the most variance, followed by those 
of abundance-based TDβ and FDβ.

Across the region, all six environmental vari-
able types explained significant amounts of variation 
of beta diversity for all facets and beta components 
(except nestedness). There were slight differences in 
the proportions of variance explained for each envi-
ronmental factor category and spatial model across 
facets. Instream variables were consistently ranked 
highest (by adjusted R2) in 7 of 8 models—exclud-
ing nestedness—accounting for an average of 43% 
of total variance explained (Table 3). Landcover and 

geology-related variables were generally the next best 
at explaining variation in beta diversity, followed by 
climate, hydrologic and physiographic, and anthropo-
genic factors (Table 3).

The proportion of variance attributed to different 
spatial models was consistent across facets for the 
regional models. Across the region, all ten spatial 
models explained significant amounts of variation of 
beta diversity for all facets and components (except 
nestedness). The spatial model based on overland 
Euclidean distance among sites (MEM_LAND) was 
consistently ranked highest (7/8 models) on aver-
age, accounting for about 76% of the total variance 
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Fig. 5  Distributions of beta diversity facets (taxon abun-
dance based, taxon incidence based, functional, and phyloge-
netic) of stream fish assemblages from streams in southeastern 
Oklahoma. The overall dissimilarity of each facet is further 
partitioned into additive components of replacement and nest-

edness. The four major drainages are shown separately for 
comparative purposes. The distributions are plotted as density 
functions or ‘ridges.’ Black lines represent the medians. All 
plots have the same x-axis range (0 = most similar to 1 = least 
similar)
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explained. The following best models depended 
on facet and component, but generally was either 
Model 3 (MEM_UPSTR_TOTAL; ~ 55% total vari-
ance explained) or the weighted tail-down asym-
metric models (Model 6, AEM_TDN_DAM, ~ 50% 
total variance explained; or Model 7, AEM_TDN_
DIST, ~ 54%). Although tail-up models consistently 
explained significant amounts of variation in beta 
diversity, they always explained less than the tail-
down counterparts. Strikingly, the commonly applied 
Model 2 (MEM_HYDRO) was consistently among 
the worst-performing models (based on adjusted R2). 

A complete list of significant spatial and environmen-
tal factors is available in the Supplementary Material 
(S15).

Beta diversity within drainages

Analyses of each drainage separately also produced 
more mixed results (Table  4). Models explained 
more variation in beta diversity for the Muddy Boggy 
and Little River drainages than the Clear Boggy and 
Kiamichi. The replacement component of overall dis-
similarity was always better explained (as with the 

Table 3  Steam fish assemblages from southeastern Oklahoma were studied by partitioning multiple facets of beta diversity (taxon, 
functional, and phylogenetic) into components of dissimilarity (overall, replacement, and nestedness)

For each facet (× 2 for taxon because both abundance-based and incidence-based data were analyzed), results for the variation par-
titioning analysis, forward selection of environmental variables, and forward selection of spatial variables are shown. All values 
in the table are adjusted R2. Bray = Bray–Curtis dissimilarity. BrayBal = balanced variation in abundance and BrayGra = abundance 
gradients (akin to replacement and nestedness for abundance data). Βsor = overall dissimilarity, βsim = replacement component, and 
βsne = nestedness component

TDβ Abundance based TDβ Incidence based FDβ PDβ

Bray BrayBal BrayGra βsor βsim βsne βsor βsim βsne βsor βsim βsne

R2 (adj.) R2 (adj.) R2 (adj.) R2 (adj.)

Variation partitioning
 Total (A + B + C) 0.28 0.50 – 0.47 0.59 – 0.17 0.40 – 0.41 0.65 –
 Spatial (A + B) 0.22 0.39 – 0.37 0.47 – 0.14 0.25 – 0.32 0.51 –
 Environ. (B + C) 0.19 0.35 – 0.33 0.43 – 0.11 0.24 – 0.27 0.45 –
 Pure spatial (A) 0.09 0.15 – 0.14 0.16 – 0.06 0.16 – 0.13 0.20 –
 Pure environ. (C) 0.06 0.11 – 0.10 0.12 – 0.03 0.15 – 0.08 0.14 –
 Shared (B) 0.12 0.24 – 0.23 0.31 – 0.08 0.09 – 0.19 0.31 –

Environmental (FWD)
 Instream 0.09 0.20 – 0.20 0.28 – 0.08 0.23 – 0.16 0.27 –
 Hydro-physio 0.06 0.13 – 0.10 0.13 – 0.02 0.09 – 0.06 0.10 –
 Climate 0.08 0.14 – 0.15 0.20 – 0.06 0.14 – 0.11 0.17 –
 Landcover 0.10 0.19 – 0.15 0.20 – 0.06 0.11 – 0.14 0.23 –
 Geology 0.08 0.15 – 0.16 0.22 – 0.07 0.17 – 0.13 0.21 –
 Anthropogenic 0.04 0.08 – 0.06 0.09 – 0.03 0.06 – 0.06 0.10 –

Spatial models (FWD)
 MEM_LAND 0.20 0.41 – 0.40 0.59 – 0.10 0.27 – 0.30 0.48 –
 MEM_HYDRO 0.08 0.15 – 0.14 0.19 – 0.04 0.10 – 0.12 0.17 –
 MEM_UPSTR_TOTAL 0.12 0.32 – 0.24 0.32 – 0.11 0.20 – 0.23 0.38 –
 MEM_UPSTR_NET 0.07 0.15 – 0.17 0.23 – 0.05 0.17 – 0.15 0.27 –
 AEM_TDN_UW 0.11 0.24 – 0.22 0.31 – 0.07 0.16 – 0.18 0.35 –
 AEM_TDN_DAM 0.12 0.24 – 0.26 0.38 – 0.08 0.21 – 0.18 0.34 –
 AEM_TDN_DIST 0.13 0.27 – 0.25 0.36 – 0.09 0.26 – 0.19 0.34 –
 AEM_TUP_UW 0.09 0.18 – 0.14 0.20 – – – – 0.11 0.19 –
 AEM_TUP_DAM 0.08 0.13 – 0.11 0.12 – 0.02 – – 0.09 0.13 –
 AEM_TUP_DIST 0.07 0.14 – 0.09 0.11 – – – – 0.08 0.11 –
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Table 4  Steam fish assemblages from southeastern Oklahoma were studied by partitioning multiple facets of beta diversity (taxon, 
functional, and phylogenetic) into components of dissimilarity (overall, replacement, and nestedness)

TDβ-Abund TDβ-Incid FDβ PDβ

Br Br.B Br.G βsor βsim βsne βsor βsim βsne βsor βsim βsne

Clear Boggy
 VarPart Total (A + B + C) 0.20 0.34 – 0.17 0.21 – – – – – – –

Spatial (A + B) 0.11 0.19 – 0.05 0.06 – – – – – – –
Environ. (B + C) 0.14 0.27 – 0.16 0.19 – – – – – – –
Pure spatial (A) 0.06 0.07 – 0.01 0.02 – – – – – – –
Pure environ. (C) 0.09 0.15 – 0.12 0.15 – – – – – – –
Shared (B) 0.05 0.12 – 0.04 0.04 – – – – – – –

 ENV FWD Instream – 0.10 – 0.10 0.13 – – – – – – –
Hydro-physio 0.13 0.17 – 0.15 0.21 – – – – – – –
Climate 0.10 0.12 – – 0.09 – – – – – – –
Landcover 0.05 – – – – – – – – – – –
Geology 0.08 0.18 – – – – – 0.13 – – – –
Anthropogenic – – – – – – – 0.15 – 0.12 0.09 –

 Spatail FWD MEM_LAND 0.07 0.20 – – – – – – – – – –
MEM_HYDRO 0.05 0.19 – – – – – – – – – –
MEM_UPSTR_TOTAL 0.04 0.09 – 0.05 0.09 – – – – – – –
MEM_UPSTR_NET 0.04 0.08 – – – – – – – – – –
AEM_TDN_UW – – – – – – – – – – – –
AEM_TDN_DAM – – – – – – – – – – – –
AEM_TDN_DIST – – – – – – – – – – – –
AEM_TUP_UW – – – – – – – – – – – –
AEM_TUP_DAM – – – – – – – – – – – –
AEM_TUP_DIST – – 0.38 – – – – – – – – –

Kiamichi River
 VarPart Total (A + B + C) 0.13 0.24 – 0.17 0.22 – 0.04 – – 0.21 0.27 –

Spatial (A + B) 0.11 0.18 – 0.12 0.18 – 0.02 – – 0.19 0.26 –
Environ. (B + C) 0.09 0.18 – 0.09 0.13 – 0.02 – – 0.11 0.15 –
Pure spatial (A) 0.05 0.06 – 0.08 0.09 – 0.02 – – 0.10 0.12 –
Pure environ. (C) 0.02 0.06 – 0.05 0.04 – 0.02 – – 0.02 0.01 –
Shared (B) 0.07 0.12 – 0.05 0.09 – 0.00 – – 0.09 0.14 –

 ENV FWD Instream 0.05 0.08 – 0.06 0.09 – – – – 0.09 0.16 –
Hydro-physio 0.06 – 0.31 0.04 0.06 – 0.02 – – 0.07 – –
Climate – – 0.33 0.05 – – – – – – – –
Landcover 0.09 0.07 – 0.04 – – – – – – – –
Geology – 0.06 – 0.07 0.10 – – 0.08 – – 0.07 –
Anthropogenic – 0.05 – – – – – – – – – 0.17
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regional analysis). Generally, the nestedness compo-
nent was either not explained by space or environment 
(9/16) or only explained by one: space (2/16) or envi-
ronment (3/16). However, incidence-based TDβ and 
PDβ nestedness components (2/16) were explained 
by both environment and space for the Muddy Boggy 

Drainage. Here, the nestedness component TDβsne 
was primarily explained by purely spatial factors and, 
to a lesser extent, by spatially structured environment 
and pure environment. However, the nestedness com-
ponent of PDβ was explained mainly by the pure and 
spatially structured environment.

Table 4  (continued)

TDβ-Abund TDβ-Incid FDβ PDβ

Br Br.B Br.G βsor βsim βsne βsor βsim βsne βsor βsim βsne

 Spatail FWD MEM_LAND 0.07 – – 0.04 – – – – – – 0.08 –

MEM_HYDRO 0.11 0.21 – 0.13 0.21 – 0.03 – – 0.16 0.35 –

MEM_UPSTR_TOTAL – – – – – – – – – – – –

MEM_UPSTR_NET 0.02 – – – – – – – – – – –

AEM_TDN_UW – – – – – – – – – 0.05 0.09 –

AEM_TDN_DAM – – – – – – – – – 0.05 0.09 –

AEM_TDN_DIST – – – – – – – – – – – –

AEM_TUP_UW – – – – – – – – – 0.09 0.12 –

AEM_TUP_DAM – – – – – – – – – – – –

AEM_TUP_DIST – – – – – – – – – – – –

TDβ-Abund TDβ-Incid FDβ PDβ

Br Br.B Br.G βsor βsim βsne βsor βsim βsne βsor βsim βsne

Muddy Boggy
 VarPart Total (A + B + C) 0.17 0.41 – 0.39 0.42 0.53 0.23 0.40 – 0.39 0.55 0.30

Spatial (A + B) 0.08 0.33 – 0.28 0.30 0.27 0.11 0.21 – 0.16 0.12 0.12
Environ. (B + C) 0.15 0.28 – 0.30 0.31 0.53 0.18 0.40 – 0.34 0.43 0.23
Pure spatial (A) 0.03 0.13 – 0.09 0.10 0.26 0.05 – – 0.05 0.12 0.06
Pure environ. (C) 0.10 0.08 – 0.11 0.11 0.09 0.13 0.19 – 0.23 0.43 0.17
Shared (B) 0.05 0.08 – 0.19 0.20 0.18 0.05 0.21 – 0.11 0.00 0.06

 ENV FWD Instream 0.10 0.21 – 0.17 0.20 – 0.05 – – 0.19 0.27 –
Hydro-physio 0.04 0.10 – 0.07 0.10 – 0.02 0.09 – 0.05 0.21 –
Climate 0.02 0.10 – 0.05 0.06 – – – – 0.07 0.13 –
Landcover 0.06 0.12 – 0.05 – 0.37 0.07 0.41 0.29 0.18 0.25 0.25
Geology 0.02 0.05 – 0.06 0.09 – 0.05 0.12 – 0.05 – –
Anthropogenic – – – – – – – – – – 0.22 –

 Spatail FWD MEM_LAND 0.05 0.20 – 0.05 0.15 0.51 0.06 – – 0.11 – 0.13
MEM_HYDRO – 0.19 – 0.23 0.22 – – – – 0.05 – –
MEM_UPSTR_TOTAL – – – – – – – – – – – –
MEM_UPSTR_NET – – – – – – – – – – – –
AEM_TDN_UW 0.03 0.08 – 0.06 0.09 – – – – 0.06 0.12 –
AEM_TDN_DAM 0.03 0.08 – 0.06 0.09 – – – – 0.05 0.12 –
AEM_TDN_DIST – – – – – – – – – - – –
AEM_TUP_UW – 0.11 – 0.10 0.13 – – – – – – –
AEM_TUP_DAM – 0.06 – – – – – – – – – –
AEM_TUP_DIST 0.02 – – – – – 0.04 0.26 – 0.07 – –
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Both facets based on taxon diversity (abundance 
and incidence based) were explained by environmen-
tal and spatial factors for all drainages. Analyses of 
individual drainages showed that purely environ-
mental factors generally explained more variation 
in assemblage composition than purely spatial fac-
tors (opposite of that found above across the region). 
However, this was not true for the Kiamichi Drainage, 
where pure space was more important than pure envi-
ronment. FDβ was not successfully modeled in either 
the Clear Boggy or Kiamichi drainages, and the same 
was true for PDβ in the Clear Boggy.

Among drainages, there was variation in which 
environmental factors explained the most variation 
in assemblage composition (Table  4). Generally, 
instream and landscape-scale landcover factors were 

among the most important (adjusted R2). Differences 
in the important environmental attributes were more 
apparent among drainages than among facets. Fewer 
differences were observed among drainages regard-
ing important spatial models. Euclidean distance 
(MEM_LAND) often explained a high amount of 
variation (as with the regional scale). The hydrologic 
distance model (MEM_HYDRO) did relatively bet-
ter at explaining variation at this spatial scale com-
pared to the regional scale. Asymmetric tail-down 
models often explained about half as much variance 
as Euclidean distance. Depending on the drainage, 
asymmetric tail-up models also explained significant 
compositional variance.

All 12 pairwise beta diversity matrices were signif-
icantly correlated, some very highly so (Supplement 

Table 4  (continued)

TDβ-Abund TDβ-Incid FDβ PDβ

Br Br.B Br.G βsor βsim βsne βsor βsim βsne βsor βsim βsne

Little River
 VarPart Total (A + B + C) 0.38 0.66 – 0.46 0.64 – 0.17 0.47 – 0.24 0.40 –

Spatial (A + B) 0.20 0.41 – 0.25 0.31 – 0.10 0.28 – 0.24 0.26 –
Environ. (B + C) 0.28 0.53 – 0.40 0.57 – 0.09 0.30 – 0.24 0.38 –
Pure spatial (A) 0.09 0.13 – 0.06 0.07 – 0.08 0.17 – 0.00 0.01 –
Pure environ. (C) 0.17 0.24 – 0.21 0.33 – 0.07 0.20 – 0.06 0.14 –
Shared (B) 0.11 0.28 – 0.20 0.24 – 0.02 0.10 – 0.18 0.24 –

 ENV FWD Instream 0.15 0.32 – 0.26 0.38 – 0.07 0.34 – 0.09 0.14 –
Hydro-physio 0.12 0.30 – 0.21 0.38 – 0.06 0.21 – 0.07 0.14 –
Climate 0.12 0.30 – 0.22 0.32 – 0.04 0.15 – 0.11 0.15 –
Landcover 0.14 0.31 – 0.28 0.40 – 0.06 0.24 – 0.11 0.21 –
Geology 0.15 0.30 – 0.26 0.36 – 0.08 0.28 – 0.14 0.21 –
Anthropogenic 0.08 0.24 – 0.15 0.23 – 0.02 0.08 – 0.10 0.16 –

 Spatail FWD MEM_LAND 0.17 0.33 – 0.29 0.43 – 0.09 – – 0.22 0.31 –
MEM_HYDRO 0.08 0.32 – 0.31 0.41 – 0.11 0.39 – 0.15 0.12 –
MEM_UPSTR_TOTAL – – – – – – – – – – – –
MEM_UPSTR_NET – – – – – – – – – – – –
AEM_TDN_UW 0.07 0.17 – 0.14 0.20 – 0.06 0.19 – 0.15 0.17 –
AEM_TDN_DAM 0.05 0.14 – 0.11 0.16 – 0.05 0.15 – 0.08 0.13 –
AEM_TDN_DIST 0.08 0.19 - 0.14 0.21 – 0.07 0.19 – 0.11 0.16 –
AEM_TUP_UW 0.03 0.06 0.28 – – – – – – – – –
AEM_TUP_DAM – – – – – – – – – – – –
AEM_TUP_DIST – 0.05 – – – – – – – – – –

Results are presented here from each of four drainages analyzed separately. For each facet (× 2 for taxon because both abundance-
based and incidence-based data were analyzed) results for the variation partitioning analysis, forward selection of environmental 
variables, and forward selection of spatial variables are shown. All values in the table are adjusted R2. Br. = Bray–Curtis dissimilarity. 
Br.B. = balanced variation in abundance and Br.G. = abundance gradients (akin to replacement and nestedness for abundance data). 
βsor = Overall dissimilarity, βsim = replacement component, and βsne = nestedness component
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S16). The highest correlations tended to be among 
components within facets (e.g., overall, replacement, 
nestedness). This is expected, as replacement and 
nestedness are components of overall dissimilarity.

Discussion

Despite correlation among diversity facets, they 
did provide complementary information. For exam-
ple, variation partitioning models of FDβ and FDα 
showed uniquely low contribution of spatially auto-
correlated environmental factors, suggesting higher 
levels of distinctly spatial (e.g., dispersal limitation) 
and environmental processes (e.g., related to stream 
hierarchy) may govern these facets. Furthermore, 
despite general patterns emerging related to which 
specific environmental and spatial factors explained 
the highest variance, there were differences in the 
ability of models to explain different facets. Moreo-
ver, across all facets, the combined spatial and envi-
ronmental model of PDβsim (replacement) explained 
the highest amount of variation (adjusted R2 = 0.65). 
The total variance explained by the combined model 
varied substantially among facets and components.

The degree to which additional facets of diversity 
provide complementary information may depend 
on several factors, including location (Burgad et  al., 
2019), latitude (Stevens & Tello, 2018), spatial scale 
(Legendre, 2014), and phylogenetic scale (Branco 
et al., 2020), all of which are naturally correlated with 
expected variation of the facets. Functional diversity, 
for example, relies on both the phylogenetic scale of 
the study and the traits used to measure those func-
tions (Mammola et al., 2021). Functional and phylo-
genetic diversity might provide more in-depth insight 
into whole community data with greater functional 
and phylogenetic scale (i.e., not constrained only 
to one group—fish). For a particular study system, 
it likely cannot be known how valuable additional 
insights gleaned from multiple facets will be until 
they are quantified and modeled (Heino & Tolonen, 
2017). For example, the explanatory power of abiotic 
factors for different diversity facets varied consider-
ably for each drainage despite being adjacent and in 
the same basin; this supports the notion that general 
patterns related to different diversity facets may not 
be generalizable.

Alpha diversity

Across the entire region and within drainages, envi-
ronmental and spatial predictors showed a disparity 
in explaining variation among facets of alpha diver-
sity. At the region scale, PDα could not be explained 
by either space or environment, suggesting that other 
factors such as stochasticity, historical contingency, 
or biotic interactions may be of greater importance 
for determining PDα (Li et  al., 2020; Morales-Cas-
tilla et al., 2020). At the drainage scale, we recovered 
this same pattern except for the Muddy Boggy, where 
spatial and environmental factors explained PDα. The 
Muddy Boggy drainage encompasses both upstream 
highland and lowland areas known to differ in habi-
tat and, consequently, fish assemblage structure (Pigg, 
1977; Zbinden & Matthews, 2017). The same pattern 
is apparent with FDα in the Muddy Boggy drainage 
but not with TDα, which was not explained by either 
space or environment. These findings suggest that the 
upland and lowland areas differ concerning functional 
and phylogenetic diversity (different kinds of species 
present yet similar richness) due to longitudinal zona-
tion (McGarvey & Hughes, 2008; Stegmann et  al., 
2019) and that phylogenetic and functional diversity 
can provide additional information beyond TD (Saito 
et al., 2015).

Across the region, models accounted for more 
variation in FDα compared to TDα. Also, these mod-
els revealed a predominance of broad- and fine-scale 
spatial factors based on the degree of upstream dis-
tance between sites that governs variability in func-
tional diversity. This suggests communities become 
less similar in terms of FDα when greater upstream 
separation presumably limits dispersal from func-
tionally richer downstream locations to more isolated 
headwater communities (Carvalho & Tejerina-Garro, 
2015; Caetano et al., 2021). While environmental fac-
tors that account for spatial and temporal heterogene-
ity also drive variation in FDα among communities, 
these factors do not appear to be spatially structured. 
We would expect them to be spatially structured if 
diversity differences were due primarily to longitu-
dinal changes in the environment (upstream–down-
stream gradient) rather than dispersal limitation.

Variation in TDα was not well explained within 
drainages either. For the Muddy Boggy and Lit-
tle drainages, FDα was the best explained facet 
of diversity, but FDα was not related to spatial and 
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environmental factors in the other drainages studied. 
This difference among drainages is likely responsi-
ble for the lower correlation coefficients observed 
for FDα across the entire region. Functional diversity 
(like PDα) in the Muddy Boggy seems partly gov-
erned by environmental differences between upland 
and lowland areas. For the Little River, we observed 
a more predominant role of purely spatial factors, 
whereas spatially structured environmental fac-
tors had minimal influence (similar to the regional 
model). Hydrologic distance and tail-down processes 
were the essential spatial factors here; this suggests 
FDα in the Little River is determined by dispersal 
limitation, particularly dispersal from downstream 
to upstream assemblages. If this were the case, we 
would expect to see greater amounts of nestedness in 
the Little River, which we found (Fig. 5).

Beta diversity

Overall, dissimilarity among assemblages was gen-
erally high. This highlights the importance of inter-
site differentiation in maintaining total diversity (i.e., 
gamma) within drainages (Whittaker, 1960; Branco 
et  al., 2020), and particularly for headwater streams 
(stream order ≤ 3), which make up most reaches stud-
ied here (115/138 sites, Supplement S17). Headwater 
stream reaches are generally less speciose than down-
stream reaches, yet headwater streams are more vari-
able among reaches in terms of species composition 
(Finn et al., 2011).

We found replacement was the more prominent 
component of overall dissimilarity between assem-
blages across all drainages and facets of diversity. 
Note, however that levels of nestedness were rela-
tively higher for FDβ and PDβ than TDβ, as has been 
reported elsewhere (Heino & Tolonen, 2017; Branco 
et al., 2020). For PDβ, levels of replacement were still 
greater but more similar to levels of nestedness. A 
dominant role of replacement—sometimes referred to 
as spatial turnover—has been observed for many dif-
ferent systems across the globe (Soininen et al., 2018; 
Branco et al., 2020). This suggests that compositional 
differences between assemblages result from species 
replacing one another rather than simple gain and loss 
between sites (Baselga, 2010). Therefore, we expect 
to find evidence for environmental and spatial filter-
ing driving that replacement (Boschilia et al., 2016). 
Indeed, spatio-environmental models accounted for 

significant variation in diversity, with up to 65 percent 
of variation explained. This suggests that community 
composition is explained by environmental and spa-
tial filtering. Spatially structured environmental varia-
bles at the landscape and instream scale played a part 
in explaining beta diversity as expected (Marsh-Mat-
thews & Matthews, 2000); however, ‘purely’ envi-
ronmental factors (i.e., not spatially structured) were 
predominately associated with instream and hydro-
physiological factors. Additionally, we found consist-
ently high levels of replacement at both spatial scales. 
López‐Delgado et  al. (2020) found the same pattern 
across scales. They suggested this is consistent with 
dispersal being limited enough between assemblages 
to not overwhelm the process of habitat filtering (i.e., 
species sorting). Indeed, most sampling locations in 
this study were far enough apart to likely limit disper-
sal for the primarily small-bodied species collected 
here.

There was high variability in explanatory power 
at the drainage scale across different facets of beta 
diversity (and across drainages). As with alpha 
diversity above, it appeared that fish diversity in the 
Muddy Boggy and Little River drainages was more 
predictable than that in the Clear Boggy and Lit-
tle River drainages (i.e., less stochastic). The best 
explained facet of beta diversity differed among 
drainages. We observed that environmental factors 
explained more variation in facets of diversity within 
Clear and Muddy Boggy drainages. Environmental 
factors were also important in the Little River, but 
space and environment were more similar for some 
facets. For the Kiamichi drainage, however, spatial 
factors were more important explainers of variation 
in diversity. Again, instream and hydrological/physi-
ographic factors played a consistent explanatory role, 
but variability was detected among facets and drain-
ages regarding which sets of spatial factors explained 
the most variation. The overland distance was consist-
ently able to explain variation at the within-drainage 
scale but less so than at the regional scale. Essential 
contributions to variation explained within drainages 
were also attributed to hydrologic distance and asym-
metric tail-down models.

Importance of spatial modeling

Explicitly considering different spatial scales and 
testing different spatial models may be more valuable 
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than investigating multiple facets of diversity. Real-
istic spatial models may show that dispersal limita-
tion is more important than previously thought. For 
example, our models attributed more diversity varia-
tion to purely spatial factors at the largest spatial scale 
assessed (total region) than the smaller spatial scale 
(within basins). Studies of stream community varia-
tion often demonstrate a small or non-significant rela-
tionship with purely spatial factors (e.g., Zbinden & 
Matthews, 2017; Huang et al., 2019; López-Delgado 
et al., 2019; Benone et al., 2020). This may be partly 
due to the small spatial scales analyzed and the use of 
only river network distance for spatial modeling. We 
predict minor dispersal limitation and spatially struc-
tured environmental heterogeneity at smaller spatial 
scales (Jackson et al., 2001; Cottenie, 2005).

Furthermore, river network distance alone does 
not always adequately account for the complex spa-
tial structure of river networks. More realistic mod-
els may be necessary to adequately capture the effects 
of spatial processes (Mozzaquattro et al., 2020). The 
spatial models used here are not mutually exclusive 
(as environmental variables are not), but the con-
tribution of each can help make inferences about 
the type of spatial processes underlying variation in 
assemblage structure. Spatially structured environ-
mental variables often contribute heavily to the total 
variance in diversity explained (Leprieur et al., 2009). 
This is expected across most spatially structured riv-
erscapes because nearest-neighboring locations are 
usually similar in environmental conditions. This 
often results in substantial diversity overlap (between 
‘close’ sites) due to environmental filtering/species 
sorting processes.

It should be noted that diversity variation explained 
by purely spatial factors is typically used to infer the 
relative influence of dispersal limitation. However, 
any unaccounted-for environmental variation that 
happens to be spatially structured can also create 
a pattern of what appears to be purely spatial varia-
tion (Landeiro et al., 2011). This potential issue was 
drastically minimized in the present study because of 
the extensive set of environmental factors considered 
(Heino & Tolonen, 2017).

Spatio-environmental factors that govern the diver-
sity of stream communities are spatially represented 
across both the riverscape and across the landscape 
(Peterson et  al., 2013). Due to this dual representa-
tion, studies examining the spatial autocorrelation 

of stream assemblages should consider geographic 
and network distances to better understand processes 
that may occur at different spatial scales (i.e., across 
drainages or catchments and along the stream net-
work). While spatial eigenvectors based on water-
course distance are expected to depict dispersal limi-
tation more accurately, the overland distance may 
also explain significant amounts of compositional 
variation (Landeiro et al., 2011). In our study region, 
we expected overland distance (MEM_LAND) to 
explain assemblage variation due to autocorrelation 
between diversity and drainage-specific environmen-
tal variables (i.e., spatially structured environmental 
filtering). Indeed, this model consistently recovered 
the strongest signal; this suggests that streams in 
close proximity (i.e., short overland Euclidean dis-
tance) tend to have similar environments and similar 
fish assemblages even if separated by large network 
distances. This signal was strongest at the largest 
spatial scale assessed (entire region), and it became 
less apparent when drainages were analyzed individu-
ally. Thus, overland distance is likely more indicative 
of spatial autocorrelation due to spatially structured 
environmental variation, while watercourse distances 
indicate dispersal limitation.

Additionally, our findings demonstrate that down-
stream and upstream dispersal limitation are not 
equal, as evidenced by the significant variation in 
beta diversity and alpha diversity explained by the 
total upstream distance (Model 3, MEM_UPSTR_
TOTAL) compared to that of symmetric network 
distance (Model 2, MEM_HYDRO). Furthermore, 
our asymmetric spatial models indicate neighboring 
assemblages can affect one another via migration and 
immigration in more of a tail-down manner—immi-
grants moving upstream possibly due to mass effects 
or source-sink dynamics (Leibold et al., 2004). How-
ever, tail-up models were often significant as well, 
suggesting that downstream migration is also impor-
tant. On a related note, Hydro-physio PC1 was asso-
ciated with network position, and one of the strongest 
variable loadings was the river volume in the catch-
ment upstream of a site. Increased volume is associ-
ated with the size and number of tributary streams in 
the catchment above a reach and is presumably asso-
ciated with greater potential for colonizers. Under-
standably, the presence of dams along the stream 
network can alter dispersal in both directions, as evi-
denced by the consistent significant signal of both 
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tail-up and tail-down models weighted by the pres-
ence of dams. Moreover, the dam-weighted models 
explained as much, or more, variance in fish assem-
blages as the distance-weighted models, thus, provid-
ing further evidence of how barriers can impact con-
nectivity among metacommunities (Shao et al., 2019; 
Mozzaquattro et al., 2020).

Conclusion

Determining the extent of additional insight gained 
by including novel diversity facets may not be 
straightforward. We found differences in the utility 
of additional diversity facets even among neighbor-
ing drainages within the same latitude. This may be 
related to differences in environmental variation and 
ecosystem complexity among the drainages assessed 
here (Maasri et al., 2021; Terui et al., 2021). The con-
sensus across facets was that environmental and spa-
tial factors play a fundamental role in governing fish 
assemblage structure, reflecting the predominance 
of environmental filtering and dispersal limitation. 
Assemblage structure is mainly the result of species 
replacement, particularly so for headwater streams. 
This suggests that tributary streams might be man-
aged individually based on unique habitat and assem-
blages (Lowe & Likens, 2005; Pracheil et al., 2013). 
However, we did find evidence of upstream dispersal 
affecting assemblage variation. Therefore, manag-
ing high diversity downstream sites can help main-
tain diversity across a metacommunity (Kanno et al., 
2012; Zbinden et al., 2022).

Local, instream factors were critical for deter-
mining reach-scale fish diversity. There may be no 
good landscape-scale substitute for the variables that 
describe heterogeneity in micro-habitat (e.g., sub-
strate, riffles, pools). These data are more challeng-
ing to gather than landscape-level data (i.e., available 
on the web), but they are indispensable (Montaña & 
Winemiller, 2010; Blanchet et  al., 2014). Further-
more, evidence that instream heterogeneity governs 
species assembly suggests managers should focus 
on protecting areas that encompass diverse habitats 
(López‐Delgado et al., 2020). Ideally, protected areas 
would encompass the full gradient of instream het-
erogeneity found within a region (Roa‐Fuentes et al., 
2019).

In riverine networks, testing spatial autocorrelation 
models based on multiple distance-based approaches 
can reveal how processes like dispersal limitation 
determine assemblage structure. Directional models 
are likely to estimate these effects better than sym-
metric models (i.e., simple network distance). Disen-
tangling the factors that control community assembly 
is vital for successfully conserving and managing 
aquatic biodiversity (Jackson et  al., 2001; Chen & 
Olden, 2020; Maasri et  al., 2021). Our capacity to 
conserve biodiversity relies on understanding how 
and why it changes across space and time.
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