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Hybridization is a complicated, oft-misunderstood process. Once deemed
unnatural and uncommon, hybridization is now recognized as ubiquitous
among species. But hybridization rates within and among communities are
poorly understood despite the relevance to ecology, evolution and conserva-
tion. To clarify, we examined hybridization across 75 freshwater fish
communities within the Ozarks of the North American Interior Highlands
(USA) by single nucleotide polymorphism (SNP) genotyping 33 species (N=
2865 individuals; double-digest restriction site-associated DNA sequencing
(ddRAD)). We found evidence of hybridization (70 putative hybrids; 2.4% of
individuals) among 18 species-pairs involving 73% (24/33) of study species,
with the majority being concentrated within one family (Leuciscidae/minnows;
15 species; 66 hybrids). Interspecific genetic exchange—or introgression—was
evident from 24 backcrossed individuals (10/18 species-pairs). Hybrids
occurred within 42 of 75 communities (56%). Four selected environmental vari-
ables (species richness, protected area extent, precipitation (May and annually))
exhibited 73–78% accuracy in predicting hybrid occurrence via random forest
classification. Our community-level assessment identified hybridization as
spatially widespread and environmentally dependent (albeit predominantly
within one diverse, omnipresent family). Our approach provides a more holis-
tic survey of natural hybridization by testing a wide range of species-pairs, thus
contrasting with more conventional evaluations.
1. Introduction
Hybridization was once considered ‘exceedingly rare’ [1], but it is now acknowl-
edged as relatively common, primarily because of better detection using modern
DNA sequencing [2,3]. A concurrent recognition is the significant role of hybrid-
ization and introgression in ecology and evolution [4–6], which diverges sharply
from the historical perspective rooted in the biological species concept [7]. But
while a growing catalogue of species known to hybridize has helped to draw
attention to hybridization (per-species documentation), the prevalence of
hybrids within and among communities is poorly understood (per-individual
documentation) [2].

The more frequently we encounter hybridization, the more evidence for its
influential role in nature [2,8]. Hybridization and introgression are often con-
sidered maladaptive threats to biodiversity [6,9]. However, it is becoming more
appreciated that the genetic novelty injected into a lineage through introgressive
hybridization can be adaptive [8] and even provide evolutionary rescue [10].
Moreover, hybridization is expected to increase in lockstep with global environ-
mental change [11,12]. Therefore, baseline estimates are needed to precisely
gauge increases in hybridization and detect where it impacts ecosystems
[10,13]. Attempts to understand the geographical patterns and processes of
hybridization have not often considered an array of taxa. Doing so will help
identify where hybridization occurs more generally and what environmental fac-
tors might drive it. These insights are essential because these places/
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environments in which hybridization is promoted may
disproportionately impact biodiversity and ecosystems [14].

Broad comparative examinations often employ meta-
analyses of numerous single-species-pair studies to quantify
hybridization rates [15] or assess biogeographic relationships
[14,16,17]. Several generalizations have emerged. Hybridiz-
ation tends to be unevenly distributed across taxonomic
groups and occurs more in plants than animals [2]. It has
been documented more so in fish than other vertebrates
[18], probably due to external fertilization within the aquatic
environment [19]. Among fish, evidence of hybridization is
more prevalent in fresh waters [1], especially between carps
and minnows (Cypriniformes) [19], owing to their high
diversity, sympatry and breeding behaviours [20].

The less time since two species have diverged, the less time
for pre- and post-zygotic barriers to evolve [20–22]. Similarly,
the geographical overlap between two closely related species
also controls the pressure to evolve reproductive barriers
[23], with most hybridizing lineages first evolving in allopatry
[24]. Pre-zygotic barriers are often keyed (directly or indirectly)
with the environment [25,26], weakening concurrently with
environmental fluctuations, thus facilitating hybridization.
For example, many fish rely on coloration to identify conspeci-
fic mates, and any environmental alterations impacting visual
acuity (e.g. turbidity, siltation) can promote hybridization [27].
Much work has focused on human impacts due to environ-
mental homogenization, sensory cue changes and creating
novel environments where hybrids may have advantages [28].

We quantified hybridization across a North American fresh-
water fish metacommunity by genotyping genome-wide single
nucleotide polymorphisms (SNPs) that allowed us to detect
hybrids among the individuals we sampled. We addressed
the following questions: (i) How many hybrids occur within
and among localities, and what is their frequency within
species/families? (ii) Is genetic exchange among species (i.e.
introgression) occurring as evinced by the presence of back-
crossed individuals (e.g. F1 × Parental)? (iii) Is the incidence of
hybrid individuals within communities predicated on environ-
mental factors which allow the prediction of hybrid occurrence?
2. Methods
(a) Data generation and processing
Our sampling area spanned the White River Basin (71 911 km2;
Ozark Plateau, North American Interior Highlands). The area
represents an ideal study location because it is: (i) an unglaciated
refugium with elevated fish diversity and limited anthropogenic
impacts [29–31]; and (ii) an excellent region from which general-
izable patterns can be interpreted, because it is central to and
representative of the Mississippi system [32]. Sampling pro-
cedures were approved by the University of Arkansas
Institutional Animal Care and Use Committee (IACUC #17077)
and appropriate permitting agencies (electronic supplementary
material, S1). Fishes were seined (June 2017 to September 2018)
and euthanized via tricaine methanesulfonate (MS-222) and
95% ethanol. Species diagnoses occurred in the laboratory.

Genomic DNA was isolated from fin clips (Qiagen Fast kits;
Qiagen Inc.) and quantified by fluorometry (Qubit; Thermo-
Fisher Scientific). Individuals were SNP genotyped using double-
digest restriction site-associated DNA sequencing (ddRAD), using
modified procedures [33,34], and sequenced as pooled batches
(N= 144/1 × 100 lane) on the Illumina HiSeq 4000 (electronic
supplementary material, S1).
Raw Illumina reads were demultiplexed (ipyrad; [35]), and
family-level phylogenies were constructed to verify individual
ID to species via an alignment- and assembly-free method
(PHYLORAD; [36]; electronic supplementary material, S1). Individ-
uals (N = 3042) were grouped by family (N = 6) and processed de
novo in IPYRAD to generate separate family-level assemblies.
Adapters/primers were removed, and reads with greater than
five low-quality bases (Phred < 20) were discarded. Clusters
were assembled using an 85% identity threshold, with loci sub-
sequently removed via conditional criteria to ensure high-
quality data (electronic supplementary material, S1). Biallelic
SNPs were further filtered and visualized using RADIATOR [37]
(electronic supplementary material, S1).

(b) Hybrid detection
Our initial objective was to detect putative hybrids and deter-
mine hybridization rates. We focused the search within families
for two reasons: no evidence implicates hybridization among
these divergent families within six different orders. Also, a
high number of species in RADseq alignments can reduce the
power to detect hybrids by diminishing recovery of homologous
loci (via allelic dropout from accumulating mutations in restric-
tion enzyme cut-sites) [38]. All analyses were conducted using
R 4.1.3 [39]. Individual genetic variation was first visualized
using separate principal components analyses (PCAs) on each
family-level SNP alignment (ADE4; [40]).

Admixture analysis employing sparse non-negative matrix
factorization (sNMF) was used to estimate ancestry coefficients
for individuals within families (25 repetitions/K value (1–25)
with regularization parameter (α) = 100 (LEA; [41]). The best K
from each run (via cross-validation) was used to impute missing
data (impute function, method = ‘mode’ in LEA), with sNMF
repeated using imputed data (as above). An individual was
flagged as a putative hybrid if the assignment probability for
the majority ancestry cluster was less than 0.9.

Results were contrasted with a maximum-likelihood clustering
approach considering hybrid categories per expected allele fre-
quencies (SNAPCLUST; [42]). Three models were tested: (i) F1 only;
(ii) F1 + first-generation backcross; and (iii) F1 + first- and second-
generation backcrosses, with AIC used to determine the best fit
[42]. Pairwise analyses were among species within families.

We assessed the power of sNMF and SNAPCLUST to detect
hybrids. We first removed putative hybrids following the
above analyses. Then, we sampled alleles from the remaining
pure individuals for each within-family species-pair to simulate
hybridization between parentals (P1 and P2). We simulated 10
each of F1, F2 and backcross (5 P1 × F1 and 5 P2 × F1) (function
hybridize; ADEGENET; [43]). SNPs for simulated hybrids were
combined with parentals before running sNMF and SNAPCLUST

(as above). We then quantified the proportion of simulated
hybrids detected by each analysis.

(c) Hybrid classification
Hybrids detected with sNMF and SNAPCLUST were classified by
assignment as F1, F2 or backcross (NEWHYBRIDS; [44]). Backcrosses
underscore hybrid viability and gene exchange among species
(i.e. introgression). We implemented HYBRIDDETECTIVE [45] to con-
firm sufficient statistical power for classification (F1, F2 or BXs).
All NEWHYBRIDS analyses were conducted pairwise among
species from which hybrids were detected. We first simulated
known class hybrids by randomly sampling two alleles/locus
from appropriate parental pools, with convergence assessed via
three replicates. We then determined an optimal posterior prob-
ability threshold (= 0.70) from which hybrid classes could be
reliably assigned. The final MCMC was 1 000 000 iterations
(250 000 burn-in). Assignments were made using a reduced
panel of 200 SNPs exhibiting the greatest among-species
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differentiation (Weir and Cockerham’s FST among target species-
pair) and lowest linkage disequilibrium (r2 < 0.2) via getTopLoc,
HYBRIDDETECTIVE [45].
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(d) Correlates of hybridization
We tested whether hybridizing/non-hybridizing species-pairs
differed significantly with respect to genetic differentiation and
basin-wide co-occurrence. Weir and Cockerham’s FST (DIVERSITY;
[46]) and the number of co-occurrences across communities
(COOCCUR; [47]) were calculated among N = 137 species-pairs
within families. Differences among hybridizing/non-hybridizing
pairs were assessed using the Wilcoxon–Mann–Whitney test
with a U statistic distribution approximated using Monte Carlo
resampling of the data (100 000 permutations).

We evaluated the influence of environmental factors on the
incidence of hybrids within communities to determine their pre-
dictability. Each community (N = 75) was classified as with/
without hybrids, with potential predictor variables being: (i)
species richness at each site; (ii) drainage identity (eight-digit
USGS hydrologic unit); and (iii) high-resolution hydro-environ-
mental descriptors (N = 281, RiverATLAS; [48]). These
encompassed factors broadly related to hydrology, physiography,
climate, land cover, geology and anthropogenic impact. Associ-
ations between hybrid incidence and predictive variables were
assessed using random forest classification (i.e. supervised
machine-learning employing linear/nonlinear relationships
among mixed data types [49]). Bootstrapped decision trees (via
predictor variables) are aggregated, with each trained on a
random two-thirds of samples (= ‘in-bag’), with validation via
the remaining one-third (= ‘out-of-bag’).

We implemented the random forest quantile-classifier approach
[50] in RANDOMFORESTSRC [51] using 100 000 bootstrapped decision
trees (= ntree), each of which randomly sampled one-third of total
predictors (= mtry). Variable importance (VIMP; increase in predic-
tion error when a variable is randomized) was quantified via
permutation for each predictive variable. VIMPs significantly
greater than 0 were assessed by subsampling 1000 trees. Random
forest variable selection was executed using minimal depth and a
conservative threshold set to ‘high’, employing only that subset
of predictive variables with significant VIMP [52]. A final
random forest model was built from this selected subset of predic-
tors. Accuracy was evaluated using G-mean (0–1; the geometric
mean of the true negative and positive rates), which replaces the
misclassification rate in imbalanced data settings [50] and the nor-
malized Brier score (0–1; mean square difference between true
classes and predicted probabilities).
3. Results
Fish collections across 75 communities/sites yielded 72 species
(N = 3605 individuals), averaging 10.8 species/site—typical for
streams across the Mississippi Basin [53]. We genotyped 33
species to represent the fish metacommunity [54] (i.e. 84% of
total individuals collected, averaging 9.44 spp./site). Of N =
137 intra-familial species-pairs examined, 13 (9.5%) did not
co-occur at our sites. Four do have non-overlapping, parapatric
distributions, each with one occurring in the upper White
River and the other in the Black River: one ictalurid (Noturus
albater/maydeni); one leuciscid (Luxilus pilsbryi / zonatus); and
two percids (Etheostoma juliae / uniporum; E. spectabile / uni-
porum). Despite range overlap, nine other pairs did not
co-occur (six leuciscids and three percids), which may be
due to chance/sampling, given that pairs included at least
one uncommon species (less than or equal to 10 occurrences).
We examined N = 2865 individuals across six families,
post-filtering using SNP genotypes (table 1; mean missing
data = 21%; mean coverage = 56×). SNPs varied by family
and were inversely related to the number of species
(table 1). Power analyses verified the robustness of panels
for detecting/classifying hybrids based on genotype frequen-
cies (electronic supplementary material, S2–S19). Among N =
30 simulated hybrids for each unique species-pair assessed
(N = 137), sNMF and SNAPCLUST detected 93% and 100%,
respectively. Simulated hybrids among pairs targeted for
classification via HYBRIDDETECTIVE and NEWHYBRIDS showed
90–100% assignment accuracy across genotype frequency
classes and species-pairs for posterior probability thresholds
greater than or equal to 0.70.
(a) Hybrid detection
The number of species-pairs examined varied considerably
among the six families/orders, with just one pair tested for
two families versus 105 pairs within Leuciscidae (table 2).
Hybrids (N = 70) were detected within four families (table 2),
with hybrid proportions ranging from 0 to 4.4% of individuals.
All but four hybrids were minnows (Leuciscidae), with excep-
tions being: (i) Micropterus dolomieu×salmoides (Centrarchidae);
(ii) Etheostoma juliae×zonale (Percidae); (iii) Etheostoma spectabil-
e×caeruleum (Percidae); and (iv) a putative multi-specific
hybrid: Noturus maydeni×albater×exilis (Ictaluridae). Thus, we
recognized N = 18 hybridizing species-pairs and N = 8
species-triplets, i.e. multi-species hybrids. We did not detect
hybrids within Cottidae or Fundulidae.

Within Leuciscidae, we identified 66 hybrids and 15
hybridizing species-pairs (electronic supplementary material,
S20). The most remarkable (N = 29 hybrids) involved Campos-
toma anomalum×oligolepis. All minnow species herein (N = 15)
appear to hybridize with at least one other species in the
study basin. The number of hybrids per species was signifi-
cantly related to the number of community occurrences
(R2 = 0.16, F = 6.1, p = 0.02).

PCA, sNMF and SNAPCLUST were largely congruent in
detecting hybrids (figures 1 and 2). Both sNMF and SNAP-

CLUST detected the same 36 hybrids, each separately
identifying additional (26 and 8, respectively). SNAPCLUST

demonstrated an exceptional ability to identify hybrids
based on allele frequencies (100%); however, its discrimina-
tory power was limited. As a result, the same individual
was frequently identified as a hybrid in several pairwise
tests, regardless of the second parental species involved. In
all cases, these could be adjudicated using PCA and sNMF;
however, low-level multi-specific introgression or that invol-
ving unsampled or ‘ghost’ lineages cannot be conclusively
excluded. A list of hybrid individuals and inferences for
each are available in electronic supplementary material, S21.
(b) Hybrid classification and introgression
We also found evidence of introgression based on the occur-
rence of backcrossed hybrid individuals. NEWHYBRIDS

identified 39% of hybrids as backcrossed (24/62, excluding
eight multi-specific hybrids); this corresponds to 55%
(10/18) of all putatively hybridizing species-pairs showing
evidence of introgressive hybridization (table 3). Approxi-
mately 24% of hybrids (15/62) were seemingly F1 or F2.
Finally, NEWHYBRIDS designated 37% (23/62) of putative



Table 1. Samples (N = 33 species) from the White River Basin, USA. NI , number of individuals/species (post-filtering); NS, number of collection sites/species
(post-filtering); miss, mean proportion of missing data; depth, mean sequencing depth; Ho, observed heterozygosity; NFA, number of individuals/family; SNPs,
single nucleotide polymorphisms in family panel (post-filtering). Note: Several taxonomic changes have been adopted in the most recent Fishes of Arkansas [30]
based on the literature but have yet to be recognized by the American Fisheries Society or Eschmeyers’s Catalogue of Fishes.

family common name scientific name NI NS miss depth Ho NFA SNPs

Centrarchidae bluegill sunfish Lepomis macrochirus 69 23 0.15 46 0.028 375 1926

longear sunfish Lepomis megalotis 239 54 0.09 47 0.036

smallmouth bass Micropterus dolomieu 43 30 0.47 39 0.011

largemouth bass Micropterus salmoides 24 17 0.46 41 0.013

Cottidae banded sculpin Cottus carolinaea 33 18 0.08 64 0.043 75 5344

Ozark sculpin Cottus hypselurusb 42 10 0.16 63 0.057

Fundulidae northern studfish Fundulus catenatus 105 28 0.12 37 0.008 226 2366

blackspotted topminnow Fundulus olivaceus 121 34 0.20 33 0.024

Ictaluridae Ozark madtom Noturus albater 10 5 0.12 65 0.033 31 2744

slender madtom Noturus exilis 16 12 0.09 51 0.042

Black River madtom Noturus maydeni 5 3 0.28 34 0.034

Leuciscidae central stoneroller Campostoma anomalumc 128 44 0.27 58 0.010 1507 343

largescale stoneroller Campostoma oligolepis 135 41 0.29 52 0.008

southern redbelly dace Chrosomus erythrogaster 38 10 0.41 38 0.001

whitetail shiner Cyprinella galactura 75 16 0.19 59 0.012

steelcolor shiner Cyprinella whipplei 30 8 0.27 65 0.010

striped shiner Luxilus chrysocephalus 63 18 0.18 59 0.013

duskystrip shiner Luxilus pilsbryi 258 33 0.09 76 0.023

bleeding shiner Luxilus zonatus 100 17 0.09 85 0.013

redfin shiner Lythrurus umbratilis 24 5 0.26 47 0.004

bigeye shiner Notropis boops 226 31 0.10 89 0.019

Ozark minnow Notropis nubilus 193 35 0.11 76 0.016

carmine shiner Notropis percobromus 67 15 0.20 66 0.010

telescope shiner Notropis telescopus 83 15 0.14 75 0.006

bluntnose minnow Pimephales notatus 55 24 0.25 73 0.007

creek chub Semotilus atromaculatus 32 14 0.32 51 0.001

Percidae greenside darter Etheostoma blennioides 62 26 0.24 55 0.006 651 687

rainbow darter Etheostoma caeruleum 348 53 0.09 54 0.026

fantail darter Etheostoma flabellare 26 11 0.33 38 0.001

yoke darter Etheostoma juliaed 63 15 0.24 58 0.011

orangethroat darter Etheostoma spectabilee 50 10 0.24 48 0.023

current darter Etheostoma uniporum 18 7 0.25 41 0.005

banded darter Etheostoma zonale 84 26 0.25 51 0.018
aUranidea carolinae.
bUranidea immaculata (knobfin sculpin).
cCampostoma plumbeum (plains stoneroller).
dNothonotus juliae.
eEtheostoma sp. cf. spectabile (Ozark darter).
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hybrids as pure parentals, although possibly introgressed
individuals poorly classified, i.e. late-generation hybrids [42].
(c) Correlates of hybridization
Genetic differentiation among species (table 4; electronic
supplementary material, S22) was significantly lower for
hybridizing versus non-hybridizing pairs (mean FST = 0.86
versus mean FST = 0.93; Z = 2.87; p = 0.004). The number of
co-occurrences between hybridizing (mean = 8.4) and non-
hybridizing pairs (mean = 7.1) did not differ significantly
(Z =−0.71; p = 0.49).

At least one hybrid individual occurred within 42/75
communities (56%). We identified 12 environmental variables
with a significant ability to reduce predictive error (i.e. VIMP)
based on random permutation of predictors in the random
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forest (electronic supplementary material, S23 and S24). From
these, just four were used to maximize the predictive capacity
of the final model based on minimal depth selection
(figure 3), including species richness (VIMP = 0.09), protected
area extent (pac_pc_use; VIMP = 0.04), mean precipitation in
May (pre_mm_c05; VIMP = 0.03), and mean annual precipi-
tation (pre_mm_cyr; VIMP = 0.03). The accuracy of the
model was satisfactory: G-mean = 0.73 and normalized Brier
score = 0.78. A similar misclassification error occurred for
communities with and without hybrids (0.26 versus 0.27,
respectively).

Neither species richness nor protected area extent were
strongly correlated with other predictor variables (r > 0.70;
Pearson correlation). The correlation coefficient between
mean May and annual precipitation was r = 0.61. Both precipi-
tation variables were strongly and positively correlated with
other climatic variables related to temperature, evapotranspira-
tion and soil water content. Annual precipitation was also
strongly but negatively correlated with river network position
(distance from network outlet; DIST_DN_KM). Although not
selected for the final model, eight additional variables were
significantly associated with hybridization based on VIMP,
including indices of human impact (N = 2), road density
(N = 1), annual snow cover (N = 1) and vegetative cover
(N = 4) (electronic supplementary material, S23 and S24).
4. Discussion
Hybridization and introgression can impact fitness, facilitate
gene exchange among species or generate new lineages
[5,6,55–57]. While hybridization has been widely documented
at the per-species level, its occurrence within communities is
expected to be rare; otherwise, species boundaries would
seriously deteriorate [2]. Despite these expectations, hybrid
prevalence at the community level is largely unknown, given
that most studies to date focus on single species-pairs (or but
a few closely related pairs) [55].

This study quantified hybridization at the community
level without a priori assumptions of putative hybridization,
thus serving as an appropriate broad-scale model without
species-specific biases. It provided a more holistic survey of
hybridization across the riverscape and thus stood in contrast
to more conventional studies based on single species-pair
evaluations.

(a) Frequency of natural hybridization
The relevance of hybridization is underscored in our study by
the detection of hybrids within four (of six) families (67%),
involving 24 (of 33) species (73%). We documented hybridiz-
ation among 18 unique species-pairs, 10 of which have been
reported previously [20,58–62]. Hybridization across our
study region was overwhelmingly within leuciscids, a ubi-
quitous family across Ozark stream communities [63]. The
unbalanced number of representatives from each family
reflects that and should not necessarily be interpreted as
differences in the propensity to hybridize among the families
more generally. Surprisingly, few hybrids were detected
within Centrarchidae and Percidae, despite an extensively
documented presence [19,64,65].

Hybridization was encountered more frequently than
anticipated, whether viewed per-individual (2.4%) or per-
species (73%). Previous estimates in plants and animals are



C. anomalum

C. erythrogaster

C. galactura

L. pilsbryi

L. umbratili
s

N. boops

N. nubilus

N. te
lescopus

P. notatus

C. oligolepis

C. whipplei

L. zonatus

L. chrysocephalus
N. percobromus

S. atromaculatus

Leuciscidae
N = 1507

E. caeruleum

E. spectabile E. flabellare

E. zonale

E. blennioides
E. uniporum

E. juliaePercidae
N = 651

PC1 (28%)

PC
2 

(1
7%

)

PC1 (40%)

PC
2 

(1
6%

)
PC

2 
(6

%
)

PC1 (72%)

N. maydeni

N. exilis

N. albater

PC1 (47%)

PC
2 

(3
8%

)

M. salmoides

M. dolomieu

L. megalotis

L. macrochirus

F. olivaceus

F. catenatus

PC1 (83%)

PC
2 

(4
%

)

PC1 (69%)

PC
2 

(4
%

)

C. carolinae
C. hypselurus

Ictaluridae

Fundulidae

Centrarchidae

Cottidae

N = 31 N = 375

N = 226N = 75

Figure 1. First two principal components derived from SNP genotypes in six fish families collected across the White River Basin, USA. The variance explained by each
component is in the bottom left or right corner of each plot. N, numbers of individuals/family.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20230768

6

lower than found herein (0.002–0.06%) [15,66,67]. If rates
among our study species were comparable to the previous
(e.g. 0.1%), we would have expected but two–three hybrids.
Earlier estimates from the literature relied on morphological
identification, a less sensitive method, especially for detecting
later-generation hybrids [19,62]. Additionally, rates herein also
reflect both our breadth of individuals evaluated, as well as
potential comparisons so tested. While our study is but a
subsample of individuals from the region and lacks represen-
tatives from every extant species, we nevertheless attempted to
reduce unsampled lineages that could bias inferences and
allow undetected or misclassified hybrids [68,69].

Hybridization is seemingly greater in fishes than in other
vertebrates due to their external fertilization within aqueous
environments [1,19,70]. Similar per-individual rates (0–4%)
were identified in marine fishes [71], with even higher rates
(22.5%) among invasive Mississippi River carp [72]. Pub-
lished per-species estimates varied from 1 to 10% across
animals and approximately 25% for plants [2,73]. Although
differences in the former are apparent from literature and
museum records, one could ask if it reflects an actual biologi-
cal signal or variance in diversity and/or research effort. For
example, once adjustments were made for diversity and
research intensity, rates were mostly homogeneous among
taxonomic groups compiled in a meta-analysis, but with
the caveat that rates for fishes were still demonstrably
higher than expected [18].

Our per-species rate was highest within our most
specious group (Leuciscidae; table 2). This parallels
previous meta-analyses identifying disproportionately high
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hybridization rates within minnows [1,19,20]. Interestingly,
leuciscid breeding behaviours—especially nest building and
association—significantly predicted hybridization rates
across the clade [20]. Many minnows broadcast gametes
widely or affix them onto substrates, often shared among
species [20,74], with as many as six simultaneously employ-
ing the same gravel substrate at once [1]. In addition,
minnows comprise the most diverse and widely distributed
North American stream fish family and numerically domi-
nate stream communities [75]. They thus encounter broad
environmental heterogeneity, demonstrate a high degree of
sympatry and exhibit uneven species abundances, which
promote hybridization [19].
(b) Introgression
The evidence of backcrossing between hybrids and parentals
suggests that hybrids can be viable and fertile, thus
facilitating introgression [67]. This genetic exchange can pro-
vide a source of novelty for evolutionary forces to act upon
[73], and the prevalence found here provides some indication
as to how probable an extraneous genetic contribution can be.
We identified 24 individuals bred from parental/hybrid
backcrosses spanning 10 species-pairs and two families (Leu-
ciscidae, Percidae). It is intriguing that the most diverse
group of North American freshwater fish—leuciscids—has
established a reputation for frequent hybridization and is
also a prolific contributor to gene exchange among species
in our study. Introgressive hybridization has played a crucial
role in cyprinid evolutionary history [67], and the evidence
gathered here suggests it may continue to do so.

Questions remain regarding whether the introgression
seen in our region is evolutionarily adaptive, maladaptive
or neutral. Answers may ultimately hinge upon differences
among species and environments [76], yet they would help
predict and mitigate adverse outcomes of hybridization



Table 3. Observed genotypic frequency classes of hybrid individuals inferred from NewHybrids analysis for 18 hybridizing fish species-pairs collected across the
White River basin, USA. Note that eight multi-specific hybrids were not included. Putative hybrids were assigned to a genotype frequency class (F1, F2, Bx[ =
backcross], pure) based on Bayesian posterior probability greater than 0.70.

no. species A species B N indiv. F1 F2 Bx pure

1 Campostoma anomalum Campostoma oligolepis 29 5 — 11 13

2 Campostoma anomalum Chrosomus erythrogaster 1 1 — 0 —

3 Campostoma anomalum Luxilus pilsbryi 1 — 1 0 —

4 Campostoma oligolepis Notropis telescopus 1 1 — 0 —

5 Cyprinella galactura Cyprinella whipplei 2 1 — 1 —

6 Cyprinella whipplei Lythrurus umbratilis 1 — — 1 —

7 Luxilus chrysocephalus Luxilus zonatus 2 1 — 0 1

8 Luxilus chrysocephalus Semotilus atromaculatus 1 — — 1 —

9 Luxilus pilsbryi Lythrurus umbratilis 6 — 1 5 —

10 Luxilus pilsbryi Notropis percobromus 2 1 — 1 —

11 Luxilus pilsbryi Luxilus zonatus 8 — — 0 8

12 Luxilus pilsbryi Luxilus chrysocephalus 1 — — 1 —

13 Luxilus zonatus Pimephales notatus 1 1 — 0 —

14 Notropis boops Notropis nubilus 2 — — 1 1

15 Pimephales notatus Semotilus atromaculatus 1 — 1 0 —

16 Micropterus salmoides Micropterus dolomieu 1 1 - 0 —

17 Etheostoma spectabile Etheostoma caeruleum 1 — — 1 —

18 Etheostoma juliae Etheostoma zonale 1 — — 1 —

Totals — — 62 12 3 24 23

Table 4. Mean, minimum and maximum values of Weir and Cockerham’s
pairwise FST calculated among species within families collected across the
White River Basin, USA. Families Cottidae and Fundulidae were represented
by only two species each, hence one value of FST.

family mean FST min FST max FST

Centrarchidae 0.94 0.85 0.98

Cottidae — 0.82 0.82

Fundulidae — 0.98 0.98

Ictaluridae 0.81 0.66 0.91

Leuciscidae 0.92 0.65 0.99

Percidae 0.93 0.78 0.98
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[77]. Climate-mediated environmental shifts will predictably
exacerbate hybridization, especially for fishes whose life his-
tories are sensitive to spawning temperatures and streamflow
[12]. Yet we recognize that hybridization is not necessarily
negative. For example, adaptive introgression between
generalist and specialist rainbow fishes has seemingly dimin-
ished climate change vulnerability in admixed individuals
compared with pure populations [10]. It is thus viewed as a
valuable component of ‘evolutionary rescue’ and an
underappreciated conservation tool [10].

(c) Correlates of hybridization
Our data concur with the premise that hybridization is
strongly influenced by both divergences among species and
also environmental factors. We focus our discussion on the
latter, per the novelty of our data and the previously estab-
lished support for the former [20–22]. In synopsis,
communities were more likely to harbour hybrids when: (i)
greater species richness existed; (ii) protected area within
the catchment was limited; and (iii) habitats were prone to
more precipitation.

While hybridizing and non-hybridizing species-pairs did
not differ significantly in their co-occurrence, we did note that
communities where more species occur together (greater rich-
ness) also possessed more hybrids (figure 3). Although
seemingly intuitive, the opposite is suggested at larger spatial
and temporal scales where greater niche availability for
hybrids might be expected in areas of lower species richness
[16,23]. Empirical results are few, and conclusions varied: for
example, the number of plant hybrids across US counties was
significantly related to species richness [17], yet uncorrelated
among coral reef fishes [14,16].

The extent of protected areas within the total watershed
upstream of the reach was negatively associated with basin-
level hybridization (figure 3). Similarly, anthropogenic impacts
were positively associated with hybridization (electronic sup-
plementary material, S24). Environmental perturbations in
general, and specifically those anthropogenic, loom large in
the hybridization literature [19,28]. Stable, more pristine
environments are expected to harbour fewer hybrids than
those perturbed, due mainly to a breakdown of reproductive
isolating mechanisms facilitated by translocations, habitat
modifications and ongoing climate change [28,78].

Greater mean precipitation within the reach catchment
(annually and in May) was also associated with elevated
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hybridization (figure 3). More precipitation is associated with
warmer and more downstream communities in our system
(i.e. more flow). Elevated levels of hybridization in these
communities are potentially driven by flooding magnitude,
particularly given the combination of higher precipitation
and lower network position. Horton stream order and
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catchment size promote the magnitude of flooding [79], as
compounded by the precipitation gradient of our study
system [80]. Additionally, the hydrologic disturbance index (a
compendium of several anthropogenic impacts) is more signifi-
cant in streams with larger drainage areas and lower gradients
(i.e. further downstream), which in turn has been shown to
promote variance in fish community composition [31].

Flooding can affect fish spawning in several ways: pro-
motion of spawning activity [80]; concentration of fishes
within refugia [53,81]; disturbance of spawning habitats
and nests [82]; displacement of oviposited eggs [53]; and
elevation of discharge/turbidity, which weakens those sen-
sory cues (e.g. visual, olfactory, environmental) that sustain
breeding isolation [25–27]. The inclusion of May precipitation
in our most predictive models supports the above, in that
study species (save two cottids) spawn in May/June [83].
Soc.B
290:20230768
5. Conclusion
Hybridization occurs more frequently than expected in the
White River Basin and is predictable based on specifics of
the environment. Although recognized as a creative evol-
utionary force, hybridization is also considered a
maladaptive threat. Further research may blueprint an even
more complex scenario and demonstrate that groups (such
as minnows) thrive proportional to their prolific gene
exchange. Moreover, hybridization is predicted to increase
in frequency with global environmental change [11,12], a rec-
ognition consistent with our finding of hybrid occurrence in
lockstep with climate-related variables. Therefore, baseline
estimates are required to gauge the increase in hybridization,
predict which ecosystems will be so impacted (and how
severely), and promote a more robust conservation and
management strategy that allows those impacts to be under-
stood and adjudicated (if so needed) [10]. Future studies like
ours will be performed at the whole-genome level, with a
resolution more robust for detecting and untangling
hybridization and its genomic consequences [24].
Data accessibility. Raw sequence files are accessioned in the NCBI
GenBank Sequence Read Archive (SRA) BioProject: PRJNA809538
[84]. SNP alignments and R code are archived on Open Science
Framework [85].

The data are provided in electronic supplementary material [86].
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