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EXECUTIVE SUMMARY 

Overview 

This study represents an extension of ongoing collabora8ve research between the Arkansas Game and 
Fish Commission (AGFC) and the Arkansas Conserva8on and Molecular Ecology Laboratory (aCaMEL) at 
the University of Arkansas. The research program was ini8ated in 2017 to inform management and risk 
assessment of Chronic Was8ng Disease (CWD) in White-tailed Deer in Arkansas by genera8ng ac8onable 
insights derived from gene8c data. The ini8al project established a state-wide gene8c database of White-
tailed Deer as a baseline for monitoring, risk assessment and modeling the poten8al spread of CWD. The 
goal of the current project was to enhance the gene8c monitoring capaci8es and model predic8ons by 
developing standardized, accurate, and easy-to-reproduce workflows and protocols.  

 

Approach 

Our previous research generated ac8onable informa8on that guided management decision and 
iden8fied logis8c and theore8cal limita8ons of exis8ng methods. Thus, the current project targeted 
several implementa8on issues: (i) 8me and exper8se required to generate and analyze genotype data; 
(ii) lack of robust methods to detect and remove spurious sta8s8cal signals; and (iii) poor performance of 
exis8ng analy8cal methods with biased sampling. The main objec8ve was to untangle gene8c popula8on 
structure based on natural dispersal of wild deer from gene8c signals reflec8ng historical management 
ac8ons (i.e., transloca8ons). A second objec8ve was reducing analy8cal biases due to sampling varia8on 
(i.e., over- and under-sampled areas). We addressed these by (1) developing a standardized genotyping 
assay (i.e., SNP GT-seq panel), (2) crea8ng novel computa8onal approaches for bias detec8on and 
mi8ga8on, and (3) genera8ng user-friendly workflows and soZware tools to facilitate data analysis.  

 

Key Outputs 

Genotyping Assay: Tool SNP GT-seq panel  

• To simplify genotyping of new samples, we developed and validated a standardized genotyping 
assay, SNP GT-seq panel, that screens 441 SNP loci using the GT-seq approach.  

• SNPs (Single Nucleotide Polymorphisms) represent genetic variation throughout the genome of deer 
and are informative to determine population structure and genetic similarity of samples.  

• Genotyping success rate is high (95.9%) for the SNP GT-seq assay, and genotypes are concordant 
(91.4% ± 3.02%) with data generated with the previous method (i.e., dRAD-seq).  

• The new assay has the potential for ~75% cost-reduction/sample.  
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Genotyping Data Processing: Tool GTSEQ2VCF  

• To facilitate processing of the SNP data generated with the new GT-seq assay and integrate these 
SNP genotypes into the existing database, we developed a bioinformatics program, GTSEQ2VCF.  

• GTSEQ2VCF is a comprehensive pipeline and merges new SNP data produced via the GT-seq assay 
with the existing state-wide SNP dataset for analysis. 

• It also integrates quality control steps to ensure reliability and accuracy of data. 

 

Geoloca<on Analysis: Tool GEOGENIE  

• To increase accuracy of geolocation predictions, we developed a new software program called 
GEOGENIE based on AI (Artificial Intelligence) approaches. 

• GEOGENIE uses a novel deep learning approach to predict ‘geographic origin’ of samples.  

• GEOGENIE is highly accurate (median predication error ~5km). It performs consistently across most 
of the state using less SNP data. 

• GEOGENIE will be freely available via public repositories (i.e., GitHub) and actionable via a user-
friendly manual. 

 

Landscape Resistance Analysis: Tool RESISTANCEGENIE  

• To facilitate fine-scale predications of deer dispersal across Arkansas, and hence inform risk 
assessment of potential CWD-spread, we developed a software program called RESISTANCEGENIE. 

• RESISTANCEGENIE facilitates landscape resistance analyses using the state-wide SNP database. 

• RESISTANCEGENIE establishes a ‘best practices’ automated bioinformatics workflow to visualize areas 
of high versus low population connectivity. 

• RESTISTANCEGENIE will be freely available via public repositories (i.e., GitHub) and actionable via a 
user-friendly manual. 

 

Conclusion 

The tools and documenta8on generated for this project help overcome prior analy8cal limita8ons and 
make gene8c informa8on more ‘ac8onable’ to help guide White-tailed Deer management and CWD risk-
assessment in Arkansas – and beyond. The genotyping assay and soZware tools developed in this project 
generate more accurate and consistent predic8ons at lower per-sample costs. Enhanced analy8cal 
accuracy and cost-efficiency will enable AGFC and partner agencies to make beier informed, and thus 
more effec8ve management decisions. This supports sustainable management prac8ces, and facilitates 
long-term implementa8on and data integra8on across various agencies and regions. 
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1 | INTRODUCTION 

1.1 | Background 

Chronic Was8ng Disease (CWD) was first confirmed in wild cervids in Arkansas in 2016. Since then, CWD 
has been detected in 20 coun8es and over 1,729 White-tailed Deer in the state (data AGFC June 30, 
2024; hips://www.agfc.com/hun8ng/deer/chronic-was8ng-disease/cwd-in-arkansas/; Figure 1). To use 
science-based management and inform risk assessment of disease suscep8bility and spread, the 
Arkansas Game and Fish Commission (AGFC) ini8ated a collabora8on with the Arkansas Conserva8on 
and Molecular Ecology Laboratory (aCaMEL) at the University of Arkansas in 2017. This ini8al effort 
resulted in a state-wide database of gene8c diversity and popula8on structure of White-tailed Deer in 
Arkansas (Douglas et al. 2019). The project characterized varia8on and distribu8on in the White-tailed 
Deer prion protein gene PRNP (Chafin et al. 2020) and quan8fied spa8al paierns in White-tailed Deer 
gene8c diversity state-wide (Chafin et al. 2021). This informa8on serves as a baseline and helps guide 
management decisions on mi8ga8ng the risk and spread of CWD in Arkansas (Ballard et al. 2021). 

 

The AGFC con8nues to monitor CWD in Arkansas and the need to expand the CWD Management Zone as 
cases of CWD+ deer are confirmed in new areas. The state-wide gene8c database can be leveraged to 
determine the likely geographic origin of any White-tailed Deer gene8c sample using a modeling 
approach (i.e., probabilis8c geoloca8on predic8on). The model predic8ons can indicate whether the 
deer is from a local herd, has dispersed from a geographically distant popula8on, or has poten8ally 
escaped from a cap8ve popula8on (Figure 2). Each of these scenarios has different management 
implica8ons. Most importantly, this informa8on is useful to evaluate the likelihood that a CWD+ White-
tailed Deer dispersed from the Management Zone where the disease is already known to occur, or if a 
deer contracted the disease locally from another CWD+ deer, poten8ally indica8ng a new CWD hotspot 
(Douglas et al. 2022). Accurate geoloca<on predic<ons enhance the AGFC’s capacity to make informed 
decisions regarding CWD detec<ons outside the current CWD Management Zone, where to focus 
management ac<ons, such as targeted removal opera<ons, and which strategies might be most 
effec<ve at minimizing CWD spread into unaffected areas. 

 

1.2 | Current Project 

In this study, we developed a more standardized genotyping approach, a SNP GT-seq assay, to simplify 
the screening of informa8ve gene8c varia8on in new White-tailed Deer collected in Arkansas. The 
method builds on our previous study (Douglas et al. 2019) and expands the exis8ng state-wide database 
of SNP (Single Nucleo8de Polymorphism) varia8on, but uses a more cost- and 8me-efficient screening 
method called GT-seq (Genotyping-in-Thousands-sequencing; Campbell et al. 2015). The approach 
simultaneously assays popula8on gene8c varia8on and PRNP gene variants and is more user-friendly 
than previously used approaches (Douglas et al. 2019; Chafin et al. 2020, 2021).  
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We also enhanced the geoloca8on predica8on analyses by developing several bioinforma8cs tools that 
integrate new SNP genotypes into the exis8ng database (GTSEQ2VCF) and rely on an AI approach (i.e., 
Deep Learning; GEOGENIE) to predict ‘geographic origin’ of samples with high accuracy (median 
predica8on error ~5km). The new geoloca8on tool performs consistently across the en8re state using 
less data and mi8gates predic8on errors caused by outlier data or sampling deficiencies. We also 
developed an automated bioinforma8cs tool (RESTISTANCEGENIE) that conducts a landscape genomics 
analysis using the state-wide SNP database. The analysis provides fine-scale predica8ons of landscape 
resistance to deer dispersal and is a tool to visualize areas of high versus low popula8on connec8vity. 
These tools provide a simple workflow and facilitate sustainable gene8c monitoring to inform 
management prac8ces and enhance data integra8on across agencies and regions. 
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2 | RESEARCH GOAL AND OBJECTIVES 

The goal of this project was to simplify gene8c monitoring of White-tailed Deer in Arkansas to facilitate 
sustainable, long-term management and risk assessment of CWD spread. The objec8ves included 
designing and valida8ng a standardized genotyping assay (SNP GT-seq panel), crea8ng standardized 
workflows and bioinforma8cs pipelines for swiZ SNP data processing (GTSEQ2VCF), developing best 
prac8ces for applying machine-learning in geoloca8on analysis (GEOGENIE), and pioneering sta8s8cal and 
computa8onal methods to study landscape resistance and animal dispersal (RESTISTANCEGENIE). 

 

ObjecAves 

1. Design and validate a standardized genotyping assay to simplify screening of informative genetic 
variation in White-tailed Deer in Arkansas. à Tool: SNP GT-seq panel 

2. Create a standardized workflow and custom bioinformatics pipelines to rapidly process SNP data 
from GT-seq. à Tool: GTSEQ2VCF 

3. Generate best practices for using and applying machine-learning geolocation analysis with SNP 
data. à Tool: GEOGENIE. 

4. Develop novel statistical and computational approaches to model landscape resistance and 
individual dispersal in species with translocation histories. à Tool: RESTISTANCEGENIE. 

5. Disseminate research findings and information about user-friendly resources through open-
source software, presentations, and peer-reviewed publications. à Tool: GitHub. 
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3 | METHODS 

3.1 | Genotyping Assay (SNP GT-seq Panel Development) 

To simplify screening of informa8ve gene8c varia8on in new White-tailed Deer samples, we developed a 
genotyping assay that standardizes genotyping of N=441 SNPs using the Genotyping-in-Thousands 
sequencing method (GT-seq; Campbell et al. 2015). The SNP data can be used for several purposes: (i) 
assignment of a White-tailed Deer sample to a gene8c popula8on and inferring its geographic origin; (ii) 
assessment of PRNP variants of individuals and popula8ons; (iii) determining the sex of individual 
samples. 

 

3.1.1 | SNP Discovery 

First, we established a database for N=1,381 individual deer from Arkansas containing genotypes 
generated via ddRAD-seq (i.e., double-digest restric8on-site-associated DNA sequencing) following 
protocols described in Chafin et al. (2021). This database comprised N=1,242 samples from our previous 
study collected from 2016-2019 (Chafin et al. 2020, 2021) and N=139 new samples collected by AGFC 
since 2019 (Douglas et al. 2022). DNA was extracted following Chafin et al. (2021). 

 

Gene8c variants called SNPs (=Single Nucleo8de Polymorphisms) were iden8fied across all individuals 
(N=1,381) by reference-guided assembly of sequences based on a chromosome-level genome of White-
tailed Deer (London et al. 2022) using IPYRAD (Eaton & Overcast 2020). This process iden8fied 
N=1,046,465 SNPs.  

 

3.1.2 | SNP Selec4on for GT-seq Panel Op4miza4on 

We first targeted the most informa8ve SNP loci to op8mize the GT-seq assay for White-tailed Deer 
management. This process required bioinforma8c filtering of data to remove SNP loci and/or samples 
that did not meet specific criteria (i.e., quality control and filtering; details provided in Appendix 1). Our 
goal was to select ~500 most informa8ve SNP loci out of the ini8al set of 2,156 SNP loci and involved 
reducing the dataset via quality control and filtering of individuals and loci using R sta8s8cal soZware 
(version 4.1.3; R Core Team 2022).  

 

To confirm that the filtered set would retain enough gene8c informa8on to infer popula8on structure, 
such as the eight gene8c popula8ons iden8fied for White-tailed Deer in Arkansas by Chafin et al. (2021), 
we applied sparse non-nega8ve matrix factoriza8on (SNMF; Frichot et al. 2014). SNP loci were then 
ranked by their popula8on divergence (Li et al. 2023), calculated from the weighted per-locus popula8on 
divergence (FST) based on the matrix of ancestry propor8ons (see Appendix 1 for more details), a method 
suited for admixed and con8nuously structured popula8ons (Mar8ns et al. 2016). 
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The SNP GT-seq assay was developed by GTseek, Inc. (Twin Falls, ID) and involved the design of primers 
for PCR amplifica8on and op8miza8on of mul8plex reac8ons. An ini8al set of SNP loci was selected for 
further tes8ng: N=800 autosomal loci with the highest gene8c divergence, N=2 loci associated with the 
PRNP gene (capturing all known variants in Arkansas; Chafin et al. 2020), and N=3 sex-linked loci on the 
Y-chromosome (Strickland et al. 2011). The ini8al GT-seq panel was tested by genotyping N=192 White-
tailed Deer: N=96 samples previously genotyped with ddRAD-seq (Table S1) and evenly distributed 
across Arkansas coun8es (Figure S1); and N=96 collected during FY23 surveillance by AGFC as Phase 6 of 
the project (Table S2). Results were evaluated for amplifica8on/genotyping success and consistency with 
data generated via ddRAD-seq. The final, filtered SNP GT-seq panel comprised N=436 autosomal loci, 
N=2 PRNP loci, and N=3 sex-linked loci, demonstra8ng desirable genotype capture rates (Figure 3).  

 

3.1.3 | GT-seq Data Processing Pipeline 

Bioinforma8cs pipelines for GT-seq data processing and quality control were developed. To validated GT-
seq as a cost-effec8ve, accurate method, genotypes for N=96 samples were generated with both ddRAD-
seq and GT-seq approaches (Table S1). A first step requires conversion of the GT-seq genotype data into a 
standard VCF (Variant Call Format) file using GTSEQ2VCF, an open-source pipeline we develop for this 
purpose. The converted SNP GT-seq genotype data can then be merged with an exis8ng SNP genotype 
database generated via ddRAD-seq, such as in our case (Chafin et al. 2021). 

 

GTSEQ2VCF generates a full graphical report of missing data and genotype mismatch for redundant 
samples. It performs all the necessary steps to merge a GT-seq file with an exis8ng VCF genotype 
database. Loci are only kept if they overlap between the two datasets, allowing a simple merger of SNP 
data matrices derived via the ddRAD-seq and GT-seq approaches. The output is a single standardized VCF 
file with a standard reference system, ready to use as input for downstream analy8cal pipelines. 

 

3.1.4 | Tes4ng Consistency between Genotyping Approaches Using Ancestry Analyses 

We wanted to confirm our new genotyping assay (SNP GT-seq panel) that screens fewer, but more 
informa8ve SNP loci was equally robust in inferrning paierns of gene8c popula8on structure as our 
ini8al dataset containing many more SNP loci generated via ddRAD-seq (reported in Chafin et al. 2021). 
To accomplish this, we conducted three independent ancestry re-analyses using ADMIXTURE (Alexander & 
Lange 2011, Mussmann et al. 2023). To avoid spurious results due to missing data or other artefacts, 
each analysis contained slightly different sets of individuals and number of SNP loci (Figure 4). 

 

Analysis 1: ddRAD-seq data - original (Figure 4A) 

The original ancestry analysis was based on N=1,143 individuals and genotypes represented N=35,099 
SNP loci generated via ddRAD-seq (Douglas et al. 2019). This analyses revealed eight gene8c popula8ons 
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as the most likely gene8c structure (published in Chafin et al. 2021). Geographic distribu8on of each 
gene8c popula8on was mapped via ancestery kriging – an oversimplified visualiza8on of assignment 
probabili8es by gene pool. 

 

Analysis 2: ddRAD-seq data - referenced aligned (Figure 4B) 

One anestery re-analysis was based on N=1,302 individuals and genotpes represented N=46,612 SNP loci 
generated via ddRAD-seq that were referenced-aligned. This data set resulted from filtering the ini8al 
ddRAD-seq dataset of N=1,046,465 SNPs, removing loci with >50% missing data, a minor allele count <3, 
and retaining one SNP per read. Individuals were removed if they had >90% missing data (N=146) or if 
they were deemed outliers (N=29) based on the geoloca8on analyses described below.  

Note: This set did included samples from Phases 1-5, but not the FY23 samples (N=96; Phase 6) that 
were genoytped across 441 SNP loci with the new GT-seq approach. 

 

Analysis 3: ddRAD-seq data - reduced to 436 SNP loci (Figure 4C) 

Another ancestery re-analysis was based on N=1,203 individuals and contained genotype data across the 
N=436 autosomal SNP loci (GT-seq panel). This data set was created by using the ddRAD-seq generated 
data (above), but reducing genotypes to just the subset of SNP loci included in the GT-seq panel. 
Individuals were removed if they had >75% missing data (N=53) or if they were deemed outliers (N=29) 
based on the geoloca8on analyses described below.  

Note: This set did not include genotypes generated with the GT-seq assay (i.e., N=96 individuals from 
FY23/Phase 6; N=96 re-genotyped individuals from Phase 1-5). We intenPonally did not include GT-
seq generated data because this methods results in few missing loci, unlike the ddRAD-seq generated 
data that has a relaPve proporPon of missing loci. The inclusing of ‘low’ and ‘high’ missing data 
genotypes can cause spurious analyPcal results (e.g., formaPon of a 'pseudo-populaPon' - see below).  

 

Analysis 4: ddRAD-seq and GT-seq data - reduced to 436 SNP loci (Figure 4D) 

A final ancestry re-analysis was based on N=1,286 individuals and contained genotype data across the 
N=436 autosomal SNP loci (GT-seq panel). This data set was a combina8on of genotypes generated via 
ddRAD-seq and the GT-seq approaches; it included all samples from analyses 3 (above) plus 183 samples 
genotyped with the GT-seq assay. Individuals were removed if they had >75%  missing data (N=62; these 
included 9 of the 192 samples genotyped with GT-seq) or if they were deemed outliers (N=29) based on 
the geoloca8on analyses described below. 

Note: This set included all samples received from Phase 1-6, and a mix of ddRAD-seq and GT-seq 
generated genotype data. It was thus comprised of genotypes with ‘high’ and ‘low’ missing data. 
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For each analysis, models with one (K=1) and up to fiZeen (K=15) popula8ons were compared using 20 
replicates each. To facilitate comparison with Chafin et al. (2021) visualiza8ons were based on eight 
gene8c popula8ons. The individual sample ancestries and their geographic coordinates were used to 
create a 250,000-pixel raster (500 x 500) of spa8ally interpolated ancestry via kriging (Caye et al. 2016) to 
visualize paierns of dominant popula8on ancestry across Arkansas, i.e., state-wide popula8on structure. 
The highest resolu8on ddRAD data (Figure 4B) was concordant with the prior findings (i.e., minimized 
cross-valida8on error at K=8). 

 

3.2 | GeolocaAon of Samples via Machine Learning 

Determining ‘point of origin’ (also referred to as ‘geographic provenance’) is a common ques8on in 
wildlife conserva8on, management, and forensics (e.g., Ogden & Linacre 2015). Recently developed 
analy8cal approaches (Baiey et al. 2020) combined with popula8on genomic data that encapsulate 
gene8c varia8on at thousands of loci facilitate this approach at an unprecedented spa8al resolu8on. 
However, the spa8al and genomic density of sampling required for accurate predic8ons oZen precludes 
its applica8on at scale for wildlife studies (Chafin et al. 2021; Douglas et al. 2018, 2019, 2022).  

 

Accurately predic8ng the likely geographic origin of a CWD+ deer is essen8al to reliably inform wildlife 
management. We developed GEOGENIE (Geographic-Gene8c Inference Engine), an AI model and 
soZware package based on the framework established in LOCATOR (Baiey et al. 2020). GEOGENIE and 
LOCATOR feature deep learning AI models that predict geographic locali8es from gene8c datasets. These 
models are par8cularly beneficial for species with high mobility, those affected by human ac8vi8es like 
long-distance transloca8ons, or cases where sample collec8on locality data are inaccurately recorded. 
They enable the inclusion of important samples with uncertain or missing locality informa8on in further 
analyses, which could otherwise generate misleading results.  

 

However, error es8mates in our LOCATOR analyses for White-tailed Deer in Arkansas were oZen 
substan8ally higher than expected (Douglas et al. 2022). We aiributed this in part to our uneven 
sampling distribu8on (i.e., an over-representa8on of samples from the Management Zones). This issue 
could be compounded if a limited number of loci is genotyped, as is the case with our SNP GT-seq assay; 
tests using LOCATOR suggested thousands of loci are needed for accurate locality predic8ons (Baiey et al. 
2020). Therefore, we incorporated several op8miza8ons and addi8onal features in GEOGENIE to counter 
the sampling imbalance and enhance predic8on performance for GT-seq data. 

 

GEOGENIE was developed with five primary objec8ves: (i) op8mize a deep learning model based on 
LOCATOR for our GT-seq panel's loci; (ii) implement strategies to address imbalanced sampling efforts; (iii) 
generate informa8ve visualiza8ons and sta8s8cs, enabling users to iden8fy regions with varying model 
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performance and quan8ta8vely evaluate model effec8veness; (iv) introduce automated parameter 
searches to iden8fy the best combina8on of sexngs for op8mal model performance; and (v) proac8vely 
detect and exclude gene8c samples that are inconsistent with other geographically neighboring samples 
or do not adhere to isola8on-by-distance paierns (Chang et al. 2023), par8cularly considering the 
transloca8on history in Arkansas (Chafin et al. 2021). This fiZh objec8ve is crucial for removing 
poten8ally translocated individuals, or those that strongly reflect past transloca8ons in their genotypes, 
and unusual long-distance dispersers because the gene8c signal of such individuals contradicts model 
assump8ons that are based on expected paierns under natural deer dispersal, i.e., isola8on-by-distance 
signals of gene8c similarity: individuals nearby are assumed to be gene8cally more similar than 
geographically distant individuals. By removing such ‘outlier’ data, the spurious signal is removed and 
thus the influence of ‘noise’ is reduced on the model's learning process. For a more comprehensive 
explana8on of GEOGENIE's underlying model, refer to Appendix 2. 

 

3.3 | Landscape Resistance to Deer Movement 

We developed RESISTANCEGENIE, a user-friendly automated workflow to simplify resistance modeling 
analysis, including data pre-processing steps. As input, RESISTANCEGENIE requires a genotype database 
(standard VCF file as described above) with relevant sample metadata (e.g., coordinates and popula8on 
assignments). It also requires GIS layers clipped to a shared spa8al extent, sampled to a concordant 
spa8al granularity, and output as modified files for any necessary downstream ploxng. For our White-
tailed Deer, we used layers represen8ng land-cover (Na8onal Landcover Database 2021), major 
highways, major rivers (Stream Order >3), large waterbodies, and a digital eleva8on model. Shapefiles 
for linear or polygon features (i.e., highways, rivers, waterbodies) were converted to raster format. All 
layers were resampled for resolu8on scaling using bilinear interpola8on (for con8nuous features), except 
NCLD-2021 (land-cover), which was resampled using a nearest neighbors algorithm due to its categorical 
features. 

 

Outlier detec8on is integrated using the GGOUTLIER algorithm (Chang & Schmid 2023). We first applied 
Principal Coordinates of Neighbor Matrices (PCNM) to model gene8c resistance surfaces to construct 
spa8al axes capturing the rela8onships among sample loca8ons (Borcard et al. 2004). PCNM involves 
compu8ng a geographic distance matrix, followed by a principal coordinates analysis (PCoA) to generate 
eigenvectors represen8ng the spa8al arrangement of samples, thus capturing spa8al autocorrela8on in 
the dataset. For our White-tailed Deer analysis, we retained half of the posi8ve eigenvalues as variables 
for downstream analysis (Manel et al., 2010).  

 

RESISTANCEGENIE next uses these spa8al vectors, alongside candidate environmental predictors, in the 
gradient forest method [(VanHove & Launey 2023) (RESGF)]. The gradient forest approach employs 
regression trees to par88on the data based on environmental gradients, with splits intended to capture 
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changes in allelic frequencies across the landscape. The predic8ve performance of each SNP locus is 
evaluated using the out-of-bag propor8on (R2), providing a cross-validated es8mate of the generaliza8on 
error. The output was a  (Figure S2) surface represen8ng the combined environmental resistance to 
individual movement, with the rela8ve importance of each predictor ranked with R2 (Figure S3) 

 

As a final step, RESISTANCEGENIE infers ‘popula8on connec8vity’ on the es8mated resistance surface 
output by RESGF as a ‘predicted gene flow’ graph (Dyer & Nason 2004). Gene8c data are first used as 
input (PEGAS: Paradis 2010), to compute a pairwise gene8c distance matrix - the propor8on of shared 
alleles (GRAPH4LG: Savary et al. 2020). Mean pairwise geographic and gene8c distances between samples 
among adjacent Arkansas coun8es are calculated using the GDISTANCE package (van Eien 2017). These 
distances are then used in an itera8ve process (van Strien et al. 2015) to find the maximum landscape 
distance where the correla8on between geographic and gene8c distances is strongest. This threshold is 
used to refine the popula8on connec8vity visualiza8on by pruning ‘predicted gene flow’ and only leaving 
edges (=blue lines) that represent Arkansas coun8es with mean gene8c similari8es and geographic 
proximi8es below the threshold, i.e.,  indica8ng popula8on connec8vity).  
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4 | RESULTS 

4.1 | Genotyping Assay: SNP GT-seq Panel 

We developed a genotyping assay that facili8es standardized screening of informa8ve SNP varia8on via 
GT-seq ( Campbell et al. 2015). The SNP GT-seq panel screens N=441 SNP loci: N=436 autosomal, N=2 
PRNP, and N=3 sex-linked markers. The SNP loci are distributed throughout the genome of White-tailed 
Deer (Figure 3) and thus effec8vely encapsulate the genomic varia8on with only a small subset of 
markers. The SNP genotypes contain sufficient gene<c informa<on to: (i) assign a sample to a gene<c 
popula<on and infer its likely geographic origin when compared to a state-wide genotype database; 
(ii) assess the PRNP gene variants of individuals and popula<ons; (iii) iden<fy the sex of an individual 
sample. 

 

This panel was tested and validated by genotyping N=192 individuals (Tables S1 and S2); addi8on of 
these samples increased the state-wide database to a total N=1,477 spa8ally referenced White-tailed 
Deer gene8c samples collected in Arkansas (Figure 2). On average, each individual was successfully 
genotyped at 95.9% of the SNP loci with the GT-seq approach, but the genotyping success rate ranged 
from 0%–97.7% due to poor sequencing results for nine individuals. The three sex-linked SNP loci 
consistently iden<fied the correct genotype (XX or XY), indica<ng female or male for all individuals. In 
every case, the genotype was consistent with the known sex of the individual. 

 

The concordance of SNP genotypes produced via SNP GT-seq versus the ddRAD-seq approach was high 
and consistent (91.4% ± 3.02%). The primary reason for discordance was missing data in poor-quality 
samples (i.e., those with a genotyping failure rate). Ensuring high-quality DNA is obtained from 8ssue 
samples minimizes genotyping failures. Overall, the SNP GT-seq genotyping assay is reliable and 
consistently produces high-quality data. 

 

Visualiza8ons of spa8al gene8c structure in White-tailed Deer across Arkansas revealed similar paierns 
between in analyses based on the reduced set of SNP loci contained in the GT-seq assay (Figure 4C) and 
the full set of SNP loci based generated by ddRAD-seq (Figure 4B) and were consistent with paierns 
reported in our previous study (Figure 4A; Chafin et al. 2021). Analysis of the highest-resolu8on ddRAD 
dataset indicated eight (K=8) gene8c popula8ons of White-tailed Deer in Arkansas, with visualiza8on of 
the ddRAD data subset to the 436 target loci showing similar spa8al distribu8on when mapping the K=8 
model (although note cross-valida8on was minimized at K=3; Figure 4C).  

Note: When samples genotyped directly with the GT-seq panel were included in the ancestry analysis, 
they formed a 'pseudo-populaPon' (K=4 in Figure 4D), which was likely due to arPfacts caused by the 
very low proporPons of missing data of those individuals compared to the others genotyped only with 
ddRAD-seq which is prone to higher (random) proporPons of missing data (but yields ~100X more 
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loci). This 'pseudo-populaPon' is absent when the newly sequenced individuals are not included 
(Figure 4C). We expect this arPfact would not exist if all samples were sequenced with the GT-seq 
panel. 

 

This comparison demonstrates that the SNP GT-seq genotyping assay has the poten<al to generate 
very similar results with a much smaller amount of informa<ve SNP data and is thus effec<ve at 
capturing relevant gene<c informa<on to model gene flow as a proxy for predic<ng deer dispersal and 
hence poten<al spread of CWD across Arkansas.  

 

4.2 | GeolocaAon of Samples via Machine Learning: GEOGENIE 

Our novel approach for predic<ng 'geographic origin' (i.e., geoloca<on modeling) was implemented in 
the GEOGENIE so^ware. It improved geoloca<on accuracy and was effec<ve with the reduced number 
of SNP loci genotyped by our GT-seq assay (Table 1, Figure 5). 

 

GeoGenIE’s predic8on error was significantly lower than that of the original LOCATOR soZware (Figure 5) 
when applied to our dataset of N=1,415 samples of White-tailed Deer from Arkansas (Figure 2) and 
genotyped across the N=436 autosomal SNP loci included in the GT-seq assay (Figure 3). Predic8on error 
was reduced by approximately 2.62-fold for the mean, 5.77-fold for the median, and 1.52-fold for the 
standard devia8on (Table 1) using the op8mized model in GeoGenIE.  

 

GeoGenIE also produces results with a substan8al reduc8on in spa8al bias, with accuracy distributed 
more evenly across the sampling area rather than confined to areas having dense sampling (Figure 6). 
This is also evidenced by a smaller nega8ve correla8on between sampling density and predic8on error 
(GEOGENIE Pearson’s R=-0.16, P=0.03; LOCATOR Pearson’s R=-0.44, P<0.0001). As a result, GeoGenIE can 
be deployed at scale, such as across the en<re state of Arkansas, at reduced sampling density and 
consistently generate accurate predic<ons. 

 

This effect is par8cularly apparent in side-by-side comparisons of geolocator predic8ons derived using 
GeoGenIE versus LOCATOR (Figures 7 and 8). A visual indicator of this performance is the contours (circles) 
containing a % of the individual bootstrap replicate predic8ons: they are generally smaller for GEOGENIE 
than LOCATOR. This increased accuracy leads to more reliable and informa<ve geoloca<on predic<ons 
(i.e., the ‘predicted loca8on’ or centroids summarized across the bootstrap replicates). Consequently, 
this increases confidence in inferred geographic loca<ons of a specific sample of interest and poten<al 
management decisions based on the modeled predic<on. 
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Model predic8ons have inherent uncertain8es, and results are influenced by various factors, including 
input data and user-selected sexngs. Predic8ons for samples of high interest (e.g., CWD-posi8ve 
samples from Randolph County collected during the FY2023 surveillance efforts) resulted in predic8ons 
with high uncertainty (Figure 8). Unfortunately, predic<on error is high for all Randolph County 
samples (Figure 6), which could reflect high ancestry in an unsampled popula8on outside of the study 
area (e.g., Missouri). Obtaining samples from adjacent coun<es in other states to create a ‘buffer zone’ 
around Arkansas should be considered as a future project objec<ve to further refine predic<ons. 

 

To provide flexibility for users and accommodate poten8al limita8ons in specific datasets, GEOGENIE 
enhancements focus on op8mizing model predic8ons through (i) sample weigh8ng, (ii) minimizing the 
effects of over- and under-sampling, and (iii) outlier detec8on and removal (e.g., N=29 ‘outlier’ samples 
with aberrant genotypes in our data set). Each of these improvements contributed to reducing 
predic8on error, though some had only a marginal impact. The most substan8al error reduc8on was 
driven by synthe8c oversampling and sample stra8fica8on, which highlights the importance of high-
quality training data for model generaliza8on. GEOGENIE is comparable to LOCATOR in computa8onal 
efficiency for individual replicates, but real run8me is faster through parallel computa8on.  

 

4.3 | Landscape Resistance to Deer Movement: RESISTANCEGENIE 

Landscape resistance modeling with the RESISTANCEGENIE pipeline (implemen8ng RESGF) iden8fied broad-
scale paierns of gene flow (i.e., deer dispersal) across Arkansas (Figure 9) that are concordant with 
previously characterized paierns of popula8on structure (Chafin et al. 2021). High levels of gene flow—
indica8ng high predicted popula8on connec8vity (visualized as ‘blue lines’; Figure 9, boiom)—were 
detected within two areas in Arkansas: Northwest and East-Central parts of the state. However, denser 
sampling in these regions may have biased the model predic8on because the procedure genera8ng the 
popula8on graph relies on an itera8ve process.  

 

The rela8ve importance of environmental variables and spa8al features (Figure S3) in predic8ng 
landscape resistance was strongly impacted by outlier samples (Figure S4). The propor8on of variance 
explained by environmental/spa8al features was much higher in the absence of outliers. Without 
outliers, eleva8on (DEM) and spa8al variables (PCNMs) were by far the strongest predictors, followed in 
order by land-cover (NLCD 2021), major highways, and major rivers (Figure S4).  

 

Outlier detec8on had a pronounced impact on model performance to predict popula8on connec8vity; 
gene flow es8mates based on an unfiltered dataset that included samples with genotypes reflec8ng 
extensive transloca8on histories, rather than natural dispersal (as per Chafin et al. 2021), resulted in 
spa8ally inconsistent predic8ons, rendering the visualiza8on useless (i.e., 'blue blob' in Figure S4).  
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5 | DISCUSSION 

Gene8c approaches are essen8al tools in contemporary wildlife management and conserva8on. Because 
of the capacity of DNA to record popula8on processes over 8me (i.e., 'DNA as an archive of popula8on 
history,' Douglas & Douglas 2010), gene8c data provide insights over various temporal and spa8al scales 
(Douglas et al. 2006, 2016) and thus complement insights generated through ecological approaches. For 
example, gene8c data provide a means to predict the likely geographic origin of a sample (i.e., 
geographic provenance; Ogden & Linacre 2015), detect hybridiza8on (Bangs et al. 2020, Chafin et al. 
2019, Mar8n et al. 2020, Zbinden et al. 2023), or quan8fy how environmental changes shape movement 
(Douglas et al. 2009, Epps & Keyghobadi 2015).  

 

Our previous research on White-tailed Deer in Arkansas established a statewide gene8c database to 
inform the management of the species and assist in risk assessment of CWD spread (Douglas et al. 2018, 
2019; Chafin et al. 2020). But these data also reflected how past management ac8ons, such as 
transloca8on, obscured ‘natural’ gene8c paierns in the species, complica8ng interpreta8ons of gene8c 
data (Chafin et al. 2021). This project builds on this prior research but focuses on enhancing 
methodological tools to simplify genotyping and provide sta8s8cally robust predic8ve modeling tools to 
facilitate long-term gene8c monitoring of White-tailed Deer and inform risk-assessment of CWD spread 
in Arkansas. These efforts addressed key objec8ves: (i) develop a standardized genotyping assay; (ii) 
mi8gate intrinsic bias in the data by detec8ng and removing spurious signals to improve the accuracy of 
model predic8ons through novel computa8onal approaches; and (iii) generate user-friendly workflows 
and establish best prac8ces.  

 

5.1 | Genotyping Assay Development: SNP GT-seq Panel 

One of the key objec<ves was to design and validate a user-friendly genotyping assay by developing a 
SNP GT-seq panel (Campbell et al. 2015). This technology differs from our previous approach (e.g., 
Douglas et al. 2018, 2019, 2022) by iden8fying a subset of SNPs that are most informa8ve and 
genotyping samples through targeted amplifica8on rather than sequencing thousands of variable SNPs 
and subsequently extrac8ng relevant informa8on through bioinforma8c processing of sequences (as 
done in ddRAD-seq). Because of the targeted, stream-lined approach, SNP GT-seq panels are ideal for 
standardizing recurring genotyping needs involving large numbers of individuals (e.g., stock assessment 
in fisheries; Meek & Larson 2019).  

 

We designed a SNP GT-seq assay for White-tailed Deer in Arkansas by selec8ng N=441 validated SNPs 
from our statewide dataset of over 1 million SNPs, retaining SNP loci that maximize informa8on content 
(Figure 3) while substan8ally decreasing sequencing and data processing efforts required to obtain the 
data. Our SNP GT-seq assay consistently recovers broad-scale paierns of popula8on structure (Figure 4). 
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We observed a high genotyping success rate (95.9% on average) and 91.4% (CI ± 3.02%) concordance 
with ddRAD data in redundantly genotyped samples, affirming the panel’s reliability and efficiency. This 
SNP GT-seq assay offers several advantages for long-term monitoring, including a lower sample failure 
rate (i.e., <7% versus >15%) and a poten8al for a 75% reduc8on in per-sample genotyping costs post-
panel development and DNA extrac8on (note: per-sample costs can be dras8cally reduced when 
genotyping larger batches of samples, i.e., several hundred samples). 

 

A benefit of a custom-built SNP GT-seq assay is the ability to incorporate addi8onal func8onali8es by 
including objec8ve-specific gene8c markers, such as sex iden8fica8on (e.g., Li et al. 2023, May et al. 
2020). This flexibility of GT-seq makes it feasible to design custom panels incorpora8ng SNP markers 
tailored to specific conserva8on and management ques8ons. Our SNP GT-seq assay includes two SNP 
loci to genotype relevant varia8on in the PRNP gene (Chafin et al. 2020), as well as three sex-linked loci, 
to iden8fy the sex of a sample. All genotype-derived sex predic8ons were consistent with the known sex 
of samples.  

 

In addi8on, we designed our SNP GT-seq assay with the enhanced capacity to recover ‘microhaplotypes’ 
through sequencing longer, paired-end reads; microhaplotypes can yield greater sta8s8cal resolu8on, 
such as es8ma8ng relatedness amongst samples, though at a trade-off of higher per-sample data 
sequencing costs (Osborne et al. 2022). Because of their poten8al to es8mate relatedness in wild 
popula8ons, microhaplotypes are increasingly recognized to inform management of fish and wildlife 
popula8ons (Delomas et al. 2023). While much of the commonly applied analy8cal infrastructure used in 
wildlife gene8cs lacks explicit compa8bility with microhaplotype data, this design considera8on provides 
a degree of ‘future-proofing’ for the developed assay.  

 

5.2 | SoVware and Method Development: Enhancements in GEOGENIE + RESITANCEGENIE 

The statewide White-tailed Deer SNP genotype dataset presents several challenges stemming from 
uneven sampling densi<es among areas and species’ management history in Arkansas. These issues 
necessitated the development of novel analy<cal approaches and their implementa<on in so^ware, as 
outlined below.  

 

5.2.1 | Detec4ng and Mi4ga4ng Bias 

White-tailed Deer genomes retain the gene8c signatures of historical processes, including human-
mediated demographic collapse (e.g., Kessler & Shafer 2024) and admixture from restora8ve 
transloca8on efforts (Chafin et al. 2021). These paierns violate fundamental assump8ons in landscape 
gene8c analyses due to two ar8ficial signals: (i) geographically distant individuals having high relatedness 
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due to common descent from translocated ancestors; and (ii) geographically proximate individuals 
exhibi8ng inflated gene8c divergence due to boileneck effects.  

For White-tailed Deer in Arkansas, these can be disentangled (Chafin et al. 2021). We developed a 
diagnos8c approach to remove spurious signals in our data based on GGOUTLIER (Chang & Schmid 2023). 
This method defines geo-gene8c outliers using k-Nearest Neighbor (kNN) regression. Removal of outliers 
increases the accuracy of geographic provenance analysis (Figure 5) and produces more biologically 
meaningful results in landscape resistance modeling (Figure 9).  

 

A second major type of bias in the statewide White-tailed Deer SNP genotype data set is due to 
opportunis8c sampling, such as hunter-harvest (Hughes et al. 2021). Uneven spa8al sampling results in 
the rela8ve over- and under-representa8on of regions, while ‘clumping’ drives autocorrela8on of model 
residuals (Kadmon et al. 2004, Reddy & Davalos 2003). This bias propagates downstream in analyses, 
skewing uncertainty and infla8ng confidence in under-performing models (e.g., Veloz 2009). Our results 
show that predic8on error in the neural network-based regression approach correlates with local 
sampling density. Mi8ga8ve approaches developed here significantly reduce this effect in terms of per-
sample accuracy (Figure 5) and error distribu8on across the landscape (Figure 6). 

 

To establish best prac8ces for genera8ng meaningful empirical results, we explored various 
combina8ons of methods during development (Figure S2). By far, the most effec8ve among these was 
using a stra8fied sampling approach, ensuring that uneven sampling density was accounted for using 
evenly distributed sample representa8on among subsets of data used for fixng, tes8ng, and evalua8ng 
the model. Other ac8ons, both individually and collec8vely, reduced model error, though to a lesser 
degree, including the ‘weigh8ng’ of model accuracy and the use of 'synthe8c oversampling' of areas with 
sparse sample representa8on, both of which aim to encourage model emphasis on under-represented 
areas, as well as the aforemen8oned outlier removal algorithm. The enhancements applied within our 
novel soZware, GEOGENIE, reduced predic8on errors by approximately 2.90-fold for the mean, 5.77-fold 
for the median, and 1.76-fold for the standard devia8on compared to LOCATOR (Table 1). Importantly, 
these improvements were consistently observed across most of the state rather than confined to regions 
with higher sampling density (Figure 6). 

 

5.2.2 | 'Less is More': Increased Performance from Less Data 

A successful outcome of the methodological tools developed in this project is that more accurate 
predic<ons for geoloca<on can be achieved with fewer samples and less data. GEOGENIE can generate 
a viable geographic representa<on for a given area with less. For example, applied to our GT-seq 
dataset of N=436 autosomal SNP loci, GEOGENIE outperforms LOCATOR applied to N=5,000 ddRAD-derived 
SNP loci reported in Chafin et al. (2021). Likewise, an analysis of op8mal sampling density, as the 
threshold sampling density aZer which predic8on error plateaus, found a ~5.8-fold decrease in the 
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number of samples required per county for a minimally viable state-wide reference database in 
Arkansas. These enhancements make genotyping and data analyses simpler and more reliable across 
the en<re state but also reduce the per-sample cost of con<nued gene<c monitoring of White-tailed 
Deer in Arkansas (and elsewhere). 

 

5.2.3 | Applying Best Prac4ces  

Established guidelines were available for developing and tes8ng the SNP GT-seq panel (e.g., Euclide et al. 
2022). Other project objec8ves required implemen8ng and experimentally valida8ng best prac8ces. For 
example, for GEOGENIE, combining automated hyperparameter op8miza8on with stra8fied sampling and 
synthe8c oversampling shows the most substan8al overall effect.  

 

Outlier removal through geo-gene<c k-Nearest-Neighbor (kNN) regression iden8fied 100% of ar8ficially 
introduced transloca8on events in valida8on experiments, which involved manually assigning incorrect 
coordinates to a subset of samples, and 29 empirical samples iden8fied as ‘outliers.’ While the number 
of outliers removed was modest, a profound impact could be seen in the distribu8on of contemporary 
gene flow events iden8fied in the landscape resistance modeling (Figure S4) and on the rela8ve assigned 
to environmental and spa8al variables (Figure S3). We recommend this as a standard prac<ce for similar 
analyses in species with histories of transloca<ons.  

 

Most theore<cal models in landscape gene<cs are based on an 'isola<on-by-distance' model of gene<c 
popula<on structure, modulated by environmental characteris<cs, and thus assume popula<on 
connec<vity to follow a form of ‘stepping-stone’ structure (e.g., Petkova et al. 2016). RESISTANCEGENIE 
leverages recent advances in the sta8s8cal frameworks available to perform resistance modeling (e.g., 
RESGF; VanHove and Launey 2023), and herein we predict the effect of environmental features on 
dispersal and connec8vity for White-tailed Deer, yielding biologically meaningful outputs when 
combined with our outlier detec8on methodologies. Despite these op<ons, users are cau<oned to 
carefully consider assump<ons to guide their selec<on of data par<<on and parameter sebngs: The 
choices we make impact model predic<ons (Mar8n et al. 2021).  

 

In this context, it is essen<al to dis<nguish between sta<s<cally significant results—or model 
predic<ons—and what interpreta<ons are biologically most meaningful. Slight varia8ons in input data 
and soZware sexngs can produce different predic8ons (e.g., Figures 8 versus 9 and 10). This requires 
effec<ve communica<on between researchers developing methods (e.g., so^ware developers) and 
biologists using the methods to generate ‘ac<onable informa<on’ that guides management decisions 
(Douglas et al. 2022a). 
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Our tools to perform geoloca<on and predict gene<c connec<vity among popula<ons are all 
disseminated as open-source resources, including R-packages and bioinforma<cs pipelines, ensuring 
these advancements are accessible to the broader scien<fic community. By providing detailed 
documenta<on and user-friendly tools we facilitate the adop<on of these methodologies for other 
regions and species. 

 

5.3 | ImplicaAons for White-tailed Deer Management 

5.3.1 | Contribu4ons towards a Sustainable Gene4c Monitoring Program 

Gene8c tools are widespread in biodiversity management and conserva8on (Hoban et al. 2022). 
However, the rapid pace of technological development and the high implementa8on costs make 
applica8on at broad spa8al and temporal scales difficult (Taylor et al. 2017). A pragma8c approach 
maximizes the con8nued usability of exis8ng repositories (e.g., pre-exis8ng datasets) while minimizing 
the cost of subsequent data acquisi8ons and expanding the database (Bertola et al. 2023)—par8cularly 
following the ini8al rounds of infrastructure investment.  

 

With the SNP GT-seq assay developed in this study, we generated a resource that standardizes efficient 
genotyping and facilitates downstream analysis for consistent gene<c monitoring in White-tailed Deer 
without re-assessment of samples previously assayed using other technologies (e.g., Douglas et al. 2018, 
2019, 2022b). This reduces per-sample costs for data genera8on and integra8on of addi8onal samples 
with the exis8ng Arkansas database, par8cularly when scaled-up to process larger batches of samples 
(e.g., 200+ samples/year). Furthermore, the SNP GT-seq assay enhances reproducibility and bolsters 
data integra<on opportuni<es across agencies, studies, and regions.  

 

Despite the widespread adop8on of gene8c tools in wildlife sciences, there remains, to some degree, a 
'research-implementa8on gap' (Bourret et al. 2020). In addi8on to the importance of partnerships such 
as the one upon which the present project builds (e.g., Chafin et al. 2020, 2021, Douglas et al. 2018, 
2019, 2022b), narrowing this gap requires that method development—oZen driven by theore8cal 
mo8va8ons tailored to par8cular research ques8ons—be aligned more directly with management needs 
(Merkle et al. 2019). Although tools for conserva8on and management are frequently published, their 
uptake rate in applied work is demonstrably low (Tkach & Watson 2023). GEOGENIE is a successful 
example of development through collabora<ve partnerships—research priori<es were developed 
through mul<ple itera<ons of management-centered use of geographic provenance analysis (Douglas 
et al. 2018, 2019, 2022b), with further inquiry iden<fying problems with current approaches, rooted in 
evolu<onary theory (Chafin et al. 2021).  
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5.3.2 | Refined Landscape Gene4c Interpreta4ons 

Our prior research iden8fied gene8cs signals in White-tailed Deer in Arkansas landscape that reflected 
historic popula8on processes (Chafin et al. 2021). These dis8nct gene8c paierns were shaped by natural 
popula8on fluctua8ons and historic management ac8ons. For example, re-expansion of popula8ons 
following a boileneck in the early 20th Century (Holder, 1951) resulted in rapid transi8ons in gene8c 
ancestry on secondary contact (e.g., Excoffier & Ray 2008, Zellmer & Knowles 2009). While historic, such 
popula8on processes generate dis8nct paierns in gene8c structure s8ll present today (considered 
ar8facts) and need to be accounted for in sta8s8cal analyses. Notably, ar8facts of the same process have 
been iden8fied as a range-wide characteris8c for White-tailed Deer (Kessler & Shafer 2024) and other 
cervid species (Burgess et al. 2023). Using appropriate sta8s8cal procedures, we were able to dis8nguish 
such signals from environmentally-mediated paierns, par8cularly for White-tailed Deer popula8ons 
north of the Arkansas River in the Ozark Mountains.  

 

A second type of ar8fact involved both inflated local gene8c divergence and an apparent paiern of high 
similarity among geographically distant samples (Chafin et al. 2021). These were aiributed to several 
historical transloca8on events from in-state and out-of-state sources (e.g., Holder 1951, Karlin et al. 
1989, Wood 1944). Several 'gene8c popula8ons' lacked spa8al cohesion or clear biogeographic/ 
environmental correla8on (Figure 4). Thus, we concluded that signals of historic transloca8ons reflected 
in our statewide genotyping data would violate assump8ons of ‘link-based’ landscape resistance models 
and limit sta8s8cal power of standard landscape gene8c approaches, as has been documented in other 
studies as well (Budd et al. 2018, Leberg et al. 1994, Leberg &Ellsworth, 1999). Despite these limita8ons, 
in our previous analyses, we were able to show the presence of major rivers as semipermeable dispersal 
barriers, as well as a possible effect linked to urbaniza8on/land use (Chafin et al. 2021), conclusions 
concordant with other studies of differing spa8al scales (e.g., Kelly et al. 2014, Locher et al. 2015, Miller 
et al. 2020, Robinson et al. 2012).  

 

In the current study, we have combined alterna8ve sta8s8cal frameworks for resistance modeling 
(VanHove & Launey 2023) with novel data processing algorithms (Chang & Schmid 2023) into an 
automated workflow, RESISTANCEGENIE, that facilitates landscape gene8cs in White-tailed Deer. Removing 
aberrant signals increased the correla<on of environmental predictors with gene<c data (Figure S4), 
with several essen<al features in the landscape becoming apparent in the higher-resolu<on composite 
resistance model (Figure 9). These include Crowley’s Ridge, the eleva8onal gradient of the Mississippi 
River valley transi8on from Ozark and Ouachita Mountains, and land-cover categoriza8ons associated 
with both the Mississippi River valley and the Ouachita-Saline Rivers. The Arkansas and Red rivers were 
also evident as dispersal barriers, although to lesser degrees. These results are consistent with well-
established physiographic boundaries and drivers and concordant with the known biogeography of 
Arkansas (e.g., Heidt et al. 1996).  
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The composite resistance surface (Figure 9) also corroborates the popula8on gene8c inferences by 
Chafin et al. (2021), underscoring how analy8cal ar8facts are due to natural and human-induced 
popula8on processes.  

 

However, extreme uneven sampling in the southern part of Arkansas could not be completely mi8gated 
by model sexngs, and cau8on is warranted when interpre8ng model predic8ons for that part of the 
state (Figure 9). Model predic8ons show very strong landscape resistance associated with river basins in 
southern Arkansas, which is inconsistent with empirical observa8ons (pers. Comm. Chris Middaugh, 
AGFC). Extreme dense clustering of samples in Union County (stemming from a targeted removal effort) 
in an otherwise very sparsly region of the state (few samples from surrounding areas) likely induced 
ar8facts, that, in turn, influenced es8mates of rela8ve contribu8on of variables (Figure S3). For example, 
NLCD 2021 map in Figure S3 reflects these basins as high resistance, but the NLCD variable did not 
contribute much to the model (Figure S4). This underscores the importance of effec<ve communica<on 
among modelers, gene<cist and deer biologist to scrui<nze model assump<ons and predica<ons. In 
our case, while model predica8ons are consistent with ecological knowledge of deer in Arkansas for 
areas with robust sampling, areas with uneven sampling might cause erroneous model performance and 
needs to be further explored.  

 

The landscape gene<c inferences provided in this study are in agreement with and further support the 
established Deer Management Units (DMUs) in use by AGFC (Meeker et al. 2019). The so^ware 
developed in this project provide a robust framework for landscape resistance inference in White-
tailed Deer, albeit with caveats and a clear need for further development, they offer addi<onal tools 
alongside disease surveillance data. Recently developed sta<s<cal methods (Walter et al. 2024) will 
allow epidemiological and environmental models to effec<vely leverage popula<on genomic data for 
more accurate modeling CWD spread, risk assessment, and science-based management. 
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7 | DATA AND CODE AVAILABILITY STATEMENT 

Data and code will be publicly released following procedures outlined in established agreements 
between the University of Arkansas and the Arkansas Game and Fish Commission, followed by an 
embargo period allowing for any publica8on review and release.  

Code for reproducing all analyses presented herein will be made available via GitHub:  

• GEOGENIE: https://github.com/btmartin721/GeoGenIE 

• gtseq2vcf: https://github.com/btmartin721/gtseq_converter 

• RESISTANCEGENIE: https://github.com/btmartin721/ResistanceGenIE 

 

User-friendly manuals for soZware will be made available and disseminated via public repositories, too. 

• GEOGENIE User Manual: https://github.com/btmartin721/GeoGenIE 

• RESISTANCEGENIE User Manual: https://github.com/btmartin721/ResistanceGenIE 
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9 | GLOSSARY 
Ancestry proportion: The estimated fraction of an individual's genome that originates from each of 
several predefined ancestral populations, typically derived from programs like ADMIXTURE that analyze 
genetic data to infer population structure and admixture. 

Artificial intelligence: A branch of computer science focused on creating systems capable of performing 
tasks that typically require human intelligence, such as visual perception, speech recognition, decision-
making, and language translation. 

Bootstrapping: A statistical method that involves repeatedly sampling from a dataset with replacement 
to estimate the distribution of a statistic and assess the variability or uncertainty of the estimates. 

Cross-validation: A statistical technique used in machine learning to assess the performance of a model 
by dividing the dataset into multiple subsets, training the model on some subsets while validating it on 
the remaining ones, and averaging the results to obtain a more reliable estimate of model performance. 

Deep learning: A subset of artificial intelligence and machine learning that uses neural networks with 
many layers to model complex patterns in data. 

ddRAD: Double-digest Restriction-site Associated DNA sequencing, a method used to discover and 
genotype large numbers of SNPs across the genome. 

Gradient forest: A machine learning method to analyze and visualize complex relationships between 
genetic data and environmental variables. 

GT-seq: Genotyping-in-Thousands by sequencing, a cost-effective and high-throughput method for 
genotyping large numbers of samples using targeted SNP panels. 

Hyperparameter (in the context of an MLP model): A configuration parameter set before training a 
multilayer perceptron (MLP) model that governs the learning process, such as the learning rate, number 
of hidden layers, and number of neurons per layer, which are not learned from the data. 

Isolation-by-distance: A population genetic pattern where the genetic similarity between individuals 
decreases as the geographic distance between them increases. 

K-nearest neighbor (KNN): A non-parametric classification algorithm that assigns a data point to the 
class most common among its k nearest neighbors in the feature space. 

K-means: A clustering algorithm that partitions a dataset into k distinct, non-overlapping subsets 
(clusters) by minimizing the variance within each cluster. 

Machine learning: A subset of artificial intelligence that involves training algorithms to recognize 
patterns in data and make predictions or decisions without being explicitly programmed for each 
specific task. 

Microhaplotype: A small, multi-SNP haplotype that can be used for fine-scale population genetic studies 
due to its high informativeness. 

Multilayer perceptron: A type of artificial neural network composed of multiple layers of nodes 
(neurons), where each layer is fully connected to the next, used for modeling complex relationships in 
data. 

Neural network: A computational model inspired by the human brain, consisting of interconnected 
nodes (neurons) that process data in layers to learn patterns and make predictions. 
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Next-generation sequencing: High-throughput DNA sequencing technologies that allow for the rapid 
sequencing of entire genomes or targeted regions of the genome. 

PCNM: Principal Coordinates of Neighbor Matrices, a method used in spatial ecology to analyze spatial 
patterns by decomposing spatial relationships into orthogonal components. 

Primer: A short single-stranded DNA sequence that provides a starting point for DNA synthesis during 
PCR amplification. 

Sex-linked markers: Genetic markers on sex chromosomes are used to study sex-specific traits and 
inheritance patterns. 

Single nucleotide polymorphism (SNP): A variation at a single position in a DNA sequence among 
individuals, which can be used as a genetic marker. 

SMOTE: Synthetic Minority Over-sampling Technique, a method used in machine learning to address 
class imbalance by generating synthetic samples for the minority class based on the feature space 
similarities between existing minority class samples. 

sNMF (sparse non-negative matrix factorization): A matrix factorization technique used in population 
genetics for inferring individual ancestry and admixture proportions, leveraging sparsity to enhance 
interpretability and computational efficiency. 

Spatial autocorrelation: The measure of how much a given variable is correlated with itself in space, 
indicating how similar or dissimilar points are to each other over a geographic area. 

Test/Train/Validation split: A technique in machine learning where the dataset is divided into three 
subsets: the training set for model training, the validation set for tuning hyperparameters and 
preventing overfitting, and the test set for evaluating the final model's performance. 

TPE (tree-structured Parzen Estimator): A Bayesian optimization algorithm used for hyperparameter 
tuning in machine learning, which models the objective function using a probabilistic approach and 
evaluates hyperparameters by constructing a tree-structured density estimator. 

VCF (Variant Call Format): A standardized text file format used in bioinformatics for storing gene 
sequence variations, including SNPs and indels. 
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Table 1.  Performance comparisons for GEOGENIE versus LOCATOR  

Three performance indicators reflec8ng predic8on error [km] of GEOGENIE versus the original LOCATOR 
soZware in modeling 'origin loca8on' in White-tailed Deer based on genotypes across 436 SNPs 
generated with the new SNP GT-seq assay. Summary sta8s8cs were calculated from ‘test sets’ of N=170 
WTD samples randomly selected and not used during model training from a total sample size of N=1,415 
WTD samples, and summarized across 100 bootstrap replicates. Predic8on error represents the 
Haversine (i.e, Great Circle) distance, in kilometers, between the locality recorded upon 8ssue collec8on 
versus the 'predicted origin.' The sta8s8cs for GEOGENIE are based on the 'op8mal' model as iden8fied 
from the combina8on of enabled or disabled sexngs (e.g., weighted sampling, removing outliers, 
yielding N=1,386 non-outlier samples, and oversampling) that most effec8vely improved predic8on 
error. 

 

Summary Statistic GEOGENIE 
[km] 

LOCATOR 
[km] 

Mean Error 22.5 59.0 
Median Error 5.7 32.9 
StdDev Error 43.9 66.9 
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Figure 1. Chronic WasAng Disease (CWD) Management Zone in Arkansas  

Status of Chronic Was8ng Disease (CWD) detec8ons in Arkansas as of 1-April-2024. The map shows 
geographic loca8ons of White-tailed Deer (WTD; dots) and Elk (diamonds) that tested posi8ve for CWD. 
Red: samples collected July 2023 through April 2024; pink = samples collected February 2016 through 
June 2023. Coun8es included in the CWD Management Zone (MZ) are outlined in black. From: 
hips://www.agfc.com/hun8ng/deer/chronic-was8ng-disease/cwd-in-arkansas/ 

(accessed 30 June 2024). 
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Figure 2. White-tailed Deer Samples by County 

Geographic distribu8on of N=1,477 spa8ally referenced White-tailed Deer sampled across Arkansas and 
genotyped in this ongoing project. Closed circles: samples that tested nega8ve for Chronic Was8ng 
Disease (CWD-); Open circles: samples that tested posi8ve for CWD. Colors reflect sampling density for 
each county based on the number of 8ssue samples represen8ng that county in the analyses: warmer 
colors equal more genotyped deer).  



38 
 

 

 
Figure 3. SNP GT-seq Panel Genome Map 

Distribu8on of SNP loci included in the GT-seq genotyping assay across the genome of White-tailed Deer. Depicted are the autosomal 
chromosomes (blue bars) with posi8ons of the 436 SNP loci denoted (red bars). Length of each chromosome is in base-pairs (y-axis). 
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Figure 4. White-tailed Deer PopulaAon Structure Based on Different SNP Datasets 

Spa8al distribu8on of Arkansas White-tailed Deer gene8c popula8ons based on different sets of SNP 
genotypes (four sets: A, B, C, D) and determined via ancestry analyses using ADMIXTURE. Spa8al 
distribu8ons are based on the geo-referenced individual ancestry of each sample ploied via spa8ally 
interpolated ancestry kriging. Panels are based on different sets of individuals and loci: (A) ddRAD-seq 
loci 2019 (original): N=1,143 deer samples genotyped across 35,099 SNP loci via ddRAD-seq (Chafin et 
al. 2021); (B) ddRAD-seq loci 2024 (reference aligned): N=1,302 deer samples genotyped across 46,612 
SNP loci via ddRAD-seq data and reference-aligned [29 outliers (GeoGenIE) and 146 samples with 
missing data >90% removed]; (C) ddRAD-seq SNPs: N=1,203 deer samples subset to just the 436 
autosomal loci included in the GT-seq panel (29 outliers, 53 individuals with missing data >75%, and 192 
samples with nearly complete GT-seq genotypes removed); and (D) ddRAD-seq+GT-seq SNPs: N=1,386 
deer samples at 436 autosomal loci, including those N=183/192 samples genotyped with the new GT-seq 
panel (29 outliers, 62 samples with missing data >75% removed). For each panel, the number of 
popula8on clusters, K, displayed was chosen based on that which minimized cross-valida8on error and 
intending to maximize the comparability among the different data sets (e.g., 'C' cross-valida8on error is 
minimized at K=3). Panel 'B' represents the highest-resolu8on popula8on structure to date, and general 
paierns are consistent with previous results.  
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Figure 5. Performance Metrics for GeolocaAon PredicAon: LOCATOR versus GEOGENIE 

Comparison of performance metrics between LOCATOR and GEOGENIE. Sta8s8cs represent three metrics 
for ‘predic8on error’ in kilometers [km]: Mean, Median and Standard Devia8on. Es8mates were based 
on N=1,415 deer samples from Arkansas genotyped across 436 SNP loci included in the GT-seq panel. 
Predic8on error was measured as the Haversine distance (i.e., Great Circle) in kilometers between 
predicted and recorded locali8es for the ‘test’ subset of samples (i.e., unseen by the model during 
training). Summary sta8s8cs involve 100 bootstrap replicates. The GEOGENIE boxplots reflect the op8mal 
model configura8on, with sample weigh8ng, outlier removal (yielding N=1,386 non-outlier samples), and 
oversampling enabled.  
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Figure 6. SpaAal InterpolaAon of GeolocaAon Performance: LOCATOR versus GEOGENIE  

Geoloca8on performance across the en8re study area showing ‘predic8on error’ in kilometers visualized 
as a map for LOCATOR (leZ) and GEOGENIE (right). Visualiza8ons were generated via spa8al interpola8on of 
‘predic8on error’ across Arkansas. Geoloca8on predic8ons are based on N=1,415 deer samples 
genotyped across 436 SNP loci included in the GT-seq panel. Interpolated errors represent the Haversine 
distance (i.e., Great Circle) between recorded and predicted longitude and la8tude coordinates, 
averaged over 100 bootstrap replicates on a held-out subset of samples unseen by the model during 
training (i.e., ‘test’ set). The GEOGENIE predic8ons reflect the op8mal model configura8on, with sample 
weigh8ng, outlier removal (yielding N=1,386 non-outlier samples), and oversampling enabled. 
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Figure 7. GeolocaAon PredicAons of LOCATOR versus GEOGENIE for Select Samples 

Comparison of geoloca8on predic8on for N=6 select samples of White-tailed Deer derived via LOCATOR 
(leZ) and GEOGENIE (right). Predic8ons were modeled based on a dataset of N=1,415 deer sampled 
across Arkansas (Figure 2) and genotyped across 436 SNP loci. Depicted for each select sample are: 
Recorded locality (▲); Predicted locality (X) calculated as geographic centroid from predicted locali8es 
of 100 individual bootstrap replicates (gray circles); contour lines indicate the areas containing 90% 
(orange), 70% (blue), and 50% (pink) of the bootstrap predic8ons, respec8vely. Coun8es shaded in gray 
highlight the 2024 Chronic Was8ng Disease (CWD) Management Zone (MZ). Map 8tles provide the 
sample iden8fier (DNA code; Table S1) and soZware package used.  
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Figure 8. GeolocaAon PredicAons of LOCATOR versus GEOGENIE for Select FY23 Samples 

Comparison of geoloca8on predic8on for N=6 select samples of White-tailed Deer collected for the 2023 
Fiscal Year (FY) Surveillance efforts by AGFC (Phase 6). Predic8ons were modeled via LOCATOR (leZ) and 
GEOGENIE (right) and based on a dataset of N=1,415 deer sampled across Arkansas (Figure 2) and 
genotyped across 436 SNP loci. Depicted for each select sample are: Recorded locality (▲); Predicted 
locality (X) calculated as geographic centroid from predicted locali8es of 100 individual bootstrap 
replicates (gray circles); contour lines indicate the areas containing 90% (orange), 70% (blue), and 50% 
(pink) of the bootstrap predic8ons, respec8vely. Coun8es shaded in gray highlight the 2024 Chronic 
Was8ng Disease (CWD) Management Zone (MZ). Map 8tles provide the sample iden8fier (DNA code; 
Table S2) and soZware package used. 
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Figure 9. Landscape Resistance and PopulaAon ConnecAvity across Arkansas 

Landscape resistance to dispersal of White-tailed Deer across Arkansas modeled using RESISTANCEGENIE to 
visualize broad paierns of popula8on connec8vity via predicted gene flow (blue lines). The maps show 
(Top LeZ) Map of Arkansas with county outlines and Management Zone highlighted in gray; (Top Right) 
Composite Resistance Surface (Top Right); and (Boiom) Popula8on connec8vity visualized as predicted 
gene flow (blue lines). The composite resistance surface was derived from a random subset of 1,000 SNP 
genotypes derived via ddRAD-seq and five environmental GIS (Geographic Informa8on Systems) layers 
(for details see Appendix 2). Outliers removed. 
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Table S1.  SNP GT-seq ValidaAon: 96 Samples Genotyped with ddRAD-seq and GT-seq   

List of 96 samples of White-tailed Deer used to validate the SNP GT-seq assay. Samples that were 
previously genotyped via ddRAD-seq during Phase 1-5 (FY 2017-2021) were randomly selected from 
each county. Listed are: AGFC ID = iden8fier given by the Arkansas Game and FIsh Commission; DNA ID = 
corresponding aCaMEL iden8fier for DNA sample; County = county where sample was recorded; CWD = 
tes8ng result for Chronic Was8ng Disease; FY = Fiscal Year of surveillance effort; Fig = figure in this report 
depic8ng predicted loca8on for sample. Recorded loca8on of each sample is depicted in Figure S1. 

 

AGFC ID DNA ID COUNTY CWD FY Fig 
CWD-AR-18-0241B 83AR2N005 Arkansas Negative 2021  
AR032436 83AS5N003 Ashley Negative 2021  
CWD-AR-00-9016 83BA3N010 Baxter Negative 2019  
CWD-AR-16-5250 83BE1N002 Benton Negative 2017  
CWD-AR-17-4120 83BE2N031 Benton Negative 2018  
CWD-AR-17-15952 83BO2N040 Boone Negative 2018  
CWD-AR-18-01133 83BR4N003 Bradley Negative 2019  
CWD-AR-16-00261 83CA1N021 Carroll Negative 2017  
CWD-AR-18-01469 83CA3U066 Calhoun Negative 2019  
CWD-AR-17-18598 83CB2N001 Cleburn Negative 2018  
CWD-AR-18-12 83CB2N004 Cleburn Negative 2018  
CWD-AR-18-426 83CH2N001 Chicot Negative 2018  
AR035750 83CL5N018 Clark Negative 2021  
CWD-AR-17-19691 83CN2N004 Conway Negative 2018  
n/a 83CO3U003 Columbia Negative 2019  
CWD-AR-00-0846 83CO3N002 Columbia Negative 2019 7 
CWD-AR-00-0583 83CR3N004 Craighead Negative 2019  
AR031106 83CS4N011 Cross Negative 2020  
CWD-AR-18-699 83CT2N005 Crittenden Negative 2018  
CWD-AR-18-829 83CW2N002 Crawford Negative 2018  
CWD-AR-18-01375 83CW4N010 Crawford Negative 2020  
n/a 83CY3U010 Clay Negative 2019  
CWD-AR-18-01533 83DL3N009 Dallas Negative 2019  
CWD-AR-00-0402 83DR3N013 Drew Negative 2019 7 
AR052695 83DR5N022 Drew Negative 2021  
AR052693 83DS5N013 Desha Negative 2021  
CWD-AR-18-0209HC 83FA2N012 Faulkner Negative 2018  
CWD-AR-17-23913 83FR2N016 Franklin Negative 2018  
AR034975 83FU5N024 Fulton Negative 2021  
CWD-AR-18-01649 83GA3N016 Garland Negative 2019  
n/a 83GE3N013 Greene Negative 2019  
CWD-AR-00-0922 83GR3N011 Grant Negative 2019  
AR035148 83HE3N007 Hempstead Negative 2019  
CWD-AR-18-1059 83HM2N006 Hempstead Negative 2018  
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CWD-AR-00-1084 83HO3U011 Howard Negative 2019  
CWD-AR-18-563 83HS2N001 Hot Springs Negative 2018  
CWD-AR-18-152 83IN2N001 Independence Negative 2018  
AR041763 83IZ5N018 Izard Negative 2021  
CWD-AR-18-586 83JA2N001 Jackson Negative 2018  
AR032403 83JE4N014 Jefferson Negative 2020  
CWD-AR-16-04180 83JO1N018 Johnson Negative 2017  
AR032109 83LA4N016 Lafayette Negative 2020  
CWD-AR-17-3529 83LE2N003 Lee Negative 2018  
CWD-AR-17-3529 83LI3U004 Lincoln Negative 2019  
CWD-AR-18-0681HC 83LN2N005 Lonoke Negative 2018  
CWD-AR-18-681 83LN3N009 Lonoke Negative 2019  
CWD-AR-16-04458 83LO1N010 Logan Negative 2017  
CWD-AR-18-1051 83LR2N005 Little River Negative 2018  
CWD-AR-00-0625 83LW3N002 Lawrence Negative 2019  
CWD-AR-16-00796 83MA1N015 Madison Negative 2017  
CWD-AR-17-12542 83MA2N026 Madison Negative 2018  
CWD-AR-00-0963 83MI3U007 Miller Negative 2019  
CWD-AR-00-0966 83MI3U010 Miller Negative 2019  
CWD-AR-18-668 83MN2N012 Monroe Negative 2018  
n/a 83MO3N001 Montgomery Negative 2019  
n/a 83MO3N002 Montgomery Negative 2019  
CWD-AR-17-15261 83MR2N027 Marion Negative 2018  
CWD-AR-17-15261 83MR2N050 Marion Negative 2018  
CWD-AR-18-579 83MS2N001 Mississippi Negative 2018  
AR041370 83MS5N004 Mississippi Negative 2020  
n/a 83NE3U002 Nevada Negative 2019  
n/a 83NE3U004 Nevada Negative 2019  
CWD-AR-16-0017 83NW2N213 Newton Negative 2018  
CWD-AR-17-12460 83NW2P230 Newton Positive 2018  
CWD-AR-18-0502HC 83OU2N005 Ouachita Negative 2018  
CWD-AR-18-0129B 83PE3N23 Perry Negative 2019  
CWD-AR-17-3855 83PH2N005 Phillips Negative 2018  
CWD-AR-00-0993 83PI3N007 Pike Negative 2019  
CWD-AR-00-8769 83PL3N002 Polk Negative 2019  
CWD-AR-18-01359 83PO3N014 Poinsett Negative 2019  
CWD-AR-16-05798 83PP1N045 Pope Negative 2017  
CWD-AR-16-05799 83PP1N046 Pope Negative 2017  
CWD-AR-17-19923 83PP2N084 Pope Negative 2018  
CWD-AR-17-3704 83PR2N001 Prairie Negative 2018  
AR001231 83PU5N019 Pulaski Negative 2021  
n/a 83RA3N009 Randolph Negative 2019  
CWD-AR-17-19925 83SA2N001 Saline Negative 2018  
CWD-AR-17-1348 83SB2N006 Sebastian Negative 2018  
AR013441 83SC3N002 Scott Negative 2019  
AR041009 83SC4N003 Scott Negative 2019  
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CWD-AR-17-13673 83SE2N019 Searcy Negative 2018  
CWD-AR-17-13675 83SE2N021 Searcy Negative 2018  
CWD-AR-17-13675 83SF3N008 St. Francis Negative 2019  
CWD-AR-00-1356 83SH3N013 Sharp Negative 2019  
CWD-AR-00-1356 83ST2N003 Stone Negative 2018  
CWD-AR-00-1356 83SV3N008 Sevier Negative 2019  
CWD-AR-00-0822 83UN3N001 Union Negative 2019  
AR054533 83UN5P008 Union Positive 2021  
AR055502 83UN5N010 Union Negative 2021  
AR055502 83VB2N007 Van Buren Negative 2018  
AR055502 83WA2N015 Washington Negative 2018  
CWD-AR-00-6659 83WA3N021 Washington Negative 2019  
CWD-AR-00-0340 83WD3N009 Woodruff Negative 2019  
CWD-AR-00-0340 83WH2N001 White Negative 2018  
CWD-AR-00-0340 83YE1N018 Yell Negative 2017  
CWD-AR-17-16447 83YE2N046 Yell Negative 2018   
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Table S2.  SNP GT-seq ValidaAon: 96 Samples Genotyped with ddRAD-seq and GT-seq   

List of 96 samples of White-tailed Deer used to validate the SNP GT-seq assay. Samples that were 
previously genotyped via ddRAD-seq during Phase 1-5 (FY 2017-2021) were randomly selected from 
each county. Listed are: AGFC ID = iden8fier given by the Arkansas Game and FIsh Commission; DNA ID = 
corresponding aCaMEL iden8fier for DNA sample; County = county where sample was recorded; CWD = 
tes8ng result for Chronic Was8ng Disease; FY = Fiscal Year of surveillance effort; Fig= figure in this report 
depic8ng predicted loca8on for sample. 

 

AGFC ID DNA ID COUNTY CWD STATUS FY Fig 
AR042193 83BA6N020 Baxter Negative 2023  

AR082524 83BA6N021 Baxter Negative 2023  

AR051018 83CA6N077 Calhoun Negative 2023  

AR012156 83CV6N020 Cleveland Negative 2023  

AR012157 83CV6N021 Cleveland Negative 2023  

AR041258 83CG6N017 Craighead Negative 2023  

AR041259 83CG6N018 Craighead Negative 2023  

AR055820 83CT6N010 Crittenden Negative 2023 8 
AR055304 83DA6N010 Dallas Negative 2023  

AR006971 83DR6N023 Drew Negative 2023  

AR006973 83DR6N024 Drew Negative 2023  

AR055296 83DR6N025 Drew Negative 2023  

AR055297 83DR6N026 Drew Negative 2023  

AR018531 83GE6N021 Greene Negative 2023  

AR018532 83GE6N022 Greene Negative 2023  

AR031730 83GE6N023 Greene Negative 2023  

AR031731 83GE6N024 Greene Negative 2023  

AR041256 83GE6N025 Greene Negative 2023  

AR083359 83HO6N021 Howard Negative 2023  

AR049508 83IN6N042 Independence Negative 2023  

AR049509 83IN6N043 Independence Negative 2023  

AR049510 83IN6N044 Independence Negative 2023  

AR049511 83IN6N045 Independence Negative 2023  

AR049512 83IN6N046 Independence Negative 2023  

AR049513 83IN6N047 Independence Negative 2023  

AR049514 83IN6N048 Independence Negative 2023  

AR049515 83IN6N049 Independence Negative 2023  

AR049516 83IN6N050 Independence Negative 2023 8 
AR049517 83IN6N051 Independence Negative 2023  

AR049518 83IN6N052 Independence Negative 2023  

AR049519 83IN6N053 Independence Negative 2023  

AR049520 83IN6N054 Independence Negative 2023  

AR049521 83IN6N055 Independence Negative 2023  

AR082546 83IN6N056 Independence Negative 2023  
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AR082547 83IN6N057 Independence Negative 2023  

AR082548 83IN6N058 Independence Negative 2023  

AR082549 83IN6N059 Independence Negative 2023  

AR082550 83IN6N060 Independence Negative 2023  

AR082551 83IN6N061 Independence Negative 2023  

AR082552 83IN6N062 Independence Negative 2023  

AR082553 83IN6N063 Independence Negative 2023  

AR082554 83IN6N064 Independence Negative 2023  

AR082555 83IN6N065 Independence Negative 2023  

AR082556 83IN6N066 Independence Negative 2023  

AR082557 83IN6N067 Independence Negative 2023  

AR082558 83IN6N068 Independence Negative 2023  

AR082559 83IN6N069 Independence Negative 2023  

AR082560 83IN6N070 Independence Negative 2023  

AR026754 83LO6N044 Logan Negative 2023  

AR026755 83LO6N045 Logan Negative 2023  

AR081866 83LO6N046 Logan Negative 2023  

AR012155 83LN6N014 Lonoke Negative 2023  

AR041458 83MS6N005 Mississippi Negative 2023  

AR041459 83MS6N006 Mississippi Negative 2023  

AR041460 83MS6N007 Mississippi Negative 2023  

AR041461 83MS6N008 Mississippi Negative 2023  

AR073510 83MS6N009 Mississippi Negative 2023  

AR041012 83PI6N011 Pike Negative 2023  

AR041013 83PI6N012 Pike Negative 2023  

AR056735 83PI6N013 Pike Negative 2023 8 
AR056736 83PI6N014 Pike Negative 2023  

ARO41011 83PI6N015 Pike Negative 2023  

AR055819 83PO6N018 Poinsett Negative 2023  

AR012183 83PU6N025 Pulaski Negative 2023  

AR006831 83RA6N012 Randolph Negative 2023  

AR041225 83RA6N013 Randolph Negative 2023  

AR055836 83RA6N014 Randolph Negative 2023 8 
AR055837 83RA6N015 Randolph Negative 2023  

AR055845 83RA6P016 Randolph P 2023 8 
AR055846 83RA6N017 Randolph Negative 2023  

AR055847 83RA6N018 Randolph Negative 2023  

AR055850 83RA6N019 Randolph Negative 2023  

AR078023 83RA6N020 Randolph Negative 2023  

AR078026 83RA6N021 Randolph Negative 2023  

AR078028 83RA6N022 Randolph Negative 2023  

AR078032 83RA6N023 Randolph Negative 2023  

AR078035 83RA6N024 Randolph Negative 2023  

AR078225 83RA6N025 Randolph Negative 2023  

AR078226 83RA6N026 Randolph Negative 2023  

AR078257 83RA6P027 Randolph P 2023 8 
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AR041009 83SC6N004 Scott Negative 2023  

AR041010 83SC6N005 Scott Negative 2023  

AR082528 83SH6N019 Sharp Negative 2023  

AR042192 83ST6N019 Stone Negative 2023  

AR082562 83ST6N020 Stone Negative 2023  

AR018093 83UN6N052 Union Negative 2023  

AR018096 83UN6N053 Union Negative 2023  

AR018097 83UN6N054 Union Negative 2023  

AR018099 83UN6N055 Union Negative 2023  

AR039804 83UN6N056 Union Negative 2023  

AR039805 83UN6N057 Union Negative 2023  

AR039809 83UN6N058 Union Negative 2023  

AR039810 83UN6N059 Union Negative 2023  

AR039811 83UN6N060 Union Negative 2023  

AR081177 83UN6N061 Union Negative 2023  

AR026727 83YE6N057 Yell Negative 2023   
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Figure S1. Sample SelecAon for SNP GT-seq Panel ValidaAon 

A map of White-tailed Deer samples (N=96) used to validate the GT-seq panel through genotyping. 
Samples were chosen that contained high propor8on of genotyping success in previous ddRAD 
sequencing and were chosen from each Arkansas county to maximize spa8al and genomic varia8on. 
Samples are listed in Table S1. 
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Figure S2. Resistance Surfaces of Five Environmental Layers 

The individual resistance layers comprising the composite surface (Figure 9) were derived from a random 
subset of 1,000 SNP genotypes and five environmental GIS (Geographic Informa8on Systems) layers: 1) 
2021 Na8onal Land Cover Database (NLCD), with generalized land cover categories (i.e., similar 
categories were merged); 2) Major arterial highways; 3) Major Rivers (Stream Order > 3); 4) Waterbodies 
(e.g., lakes, ponds, wetlands); 5) a Digital Eleva8on Model (DEM). For addi8onal detail, see Appendix 2.  
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Figure S3. RelaAve Importance of Variables to Predict Landscape Resistance 

Influence of gene8c variance due to outlier data on the rela8ve importance of environmental variables 
and spa8al features to predict landscape resistance. Blue: outliers included; Orange: outliers removed. 
The rela8ve importance metric quan8fies the contribu8on of each environmental layer and combined 
PCNMs to the gene8c varia8on observed in the SNP data. The individual resistance layers comprising the 
composite surface (Figure 9) were derived from a random subset of 1,000 SNP loci and five 
environmental GIS environmental layers: DEM = Digital Eleva8on Model; NLCD 2021 = Na8onal Land 
Cover Database, with generalized land cover categories (i.e., similar categories were merged); Major 
Highways = major arterial roads; Major Rivers = len8c systems with Stream Order >3; and Waterbodies = 
lo8cs systems (e.g., lakes, ponds, wetlands, etc.). Combined PCNMs (Principal Coordinates of Neighbor 
Matrices) = spa8al variables capturing spa8al autocorrela8on in the gene8c data. For addi8onal detail, 
see Appendix 2. 
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 With outliers Outliers removed 

 

Figure S4. Predicted Gene Flow Pathways – Effects of Outliers 

Predicted gene flow pathways (blue lines) across Arkansas coun8es visualize popula8on connec8vity 
with outliers included (leZ) and with outlier removal enabled (right). The presence of gene flow 
pathways is determined as being within a threshold distance, beyond which the correla8on between 
gene8c similarity and geographic proximity diminishes. Because historic transloca8ons of White-tailed 
Deer across Arkansas remain as ancestry signals in the genotypes of samples, the correla8on between 
spa8al and gene8c distances is spurious (i.e., deviates from model assump8on of ‘isola8on-by-distance’). 
The uncorrected data (leZ) mask the nuanced signals reflec8ng natural deer dispersal over genera8ons; 
the resul8ng visualiza8on is meaningless. For details on the underlying composite resistance surface, see 
Appendix 2.  
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Appendix 1: GT-SEQ Panel Development 

SNP Discovery 

Our goal was to generate a Genotyping-in-Thousands (GT-seq) panel (Campbell et al. 2015) containing 
400 to 500 SNP loci from which popula8on assignment and approximate geographic origin for newly 
sampled individuals could be inferred. We generated ddRADseq data for a total of N=1,381 individual 
deer from Arkansas following Chafin et al. (2021) protocols, which ini8ally produced N=1,242 of the 
individual sequences used herein, and augmented since by data generated via ddRAD-seq for addi8onal 
samples (N=139) collected by AGFC during surveillance efforts from 2019-2022 (Douglas et al. 2022). 

 

Gene8c variants called containing 1,046,465 SNPs (= Single Nucleo8de Polymorphisms) from all 
individuals (N=1,381) were aligned using reference-guided assembly based on a chromosome-level 
genome assembly of White-tailed Deer (London et al. 2022) using IPYRAD v.0.9.87 (Eaton and Overcast 
2020). Quality control checks were performed on the raw sequence data using FastQC 
(hips://www.bioinforma8cs.babraham.ac.uk/projects/fastqc/). Raw sequence files were then de-
mul8plexed, and reads were assigned to individuals based on their unique DNA barcodes, allowing no 
tolerance for mismatched barcodes. 

 

Adapters and primers were removed and reads with >5 low-quality bases (Phred<20) were discarded. 
Clusters were removed via condi8onal criteria to ensure high-quality data: <10x and >1000x coverage 
per individual; >5% of consensus nucleo8des ambiguous; >20% of nucleo8des polymorphic; >8 indels 
present; or presence in <20 individuals. Puta8ve paralogs were removed if clusters displayed >2 alleles 
per site in consensus sequence or excessive heterozygosity (>5% consensus bases or >50% 
heterozygosity/site). 

 

SNP Filtering for GT-seq Panel 

Quality control and filtering of the loci alignment were used to reduce the data to those SNPs most 
suitable for GT-seq using the R sta8s8cal soZware version 4.1.3 (R Core Team 2022). We first eliminated 
any individuals with more than 50% missing data. Subsequent SNP reten8on was based on stringent 
criteria: SNPs had to be located on one of the 36 autosomal chromosomes; posi8oned between bases 
25-75 on a 100bp read; and found on a read with 12 or fewer SNPs. Addi8onally, the reads were required 
to have a minimum sequence depth of 10X and a maximum of 200X. Only SNPs that were present in at 
least 50% of the individuals and had a minor allele count of at least two were considered. When mul8ple 
SNPs per 100bp read met these criteria, we selected the SNP with the highest minor allele count to 
maintain a single SNP per read and minimize linkage disequilibrium. A combina8on of R packages was 
used for visualiza8on, summary, and filtering, including VCFR v.1.13.0 (Knaus & Grünwald 2017), SNPFILTR 
v.1.0.0 (DeRaad 2022), and DARTR v.2.7.2 (Mijangos et al. 2022). 
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Popula8on Structure and Ranking SNPs by Divergence 

The resul8ng 2,156 SNP loci were used to infer popula8on structure using an approach that clusters 
individuals (N=1,298) based on genotypes called sparse non-nega8ve matrix factoriza8on (SNMF; Frichot 
et al. 2014). K=1 to K=15 were analyzed for fit using cross-valida8on with 25 replicates and a 
regulariza8on parameter of 100. Based on this analysis and the previously published popula8on 
structure of Arkansas White-tailed Deer (Chafin et al. 2021), we grouped the individuals into K=8 gene8c 
popula8ons.  

 

To determine which loci were most informa8ve for iden8fying popula8on assignment and we ranked 
them based on their popula8on divergence (Li et al. 2023). We calculated the gene8c divergence (FST) 
per locus based on the matrix of ancestry propor8ons es8mated using the K=8 sNMF solu8on (Qmatrix = 
individuals X sub-popula8ons). We used a slightly modified version of the func8on 'snmf.pvalues' from 
the LEA package (Frichot & François 2015). The func8on was modified to output the FST values. This 
approach works well for admixed and more con8nuously structured popula8ons by using the ancestry 
propor8ons to weight heterozygosity used to calculate FST (Mar8ns et al. 2016). 

 

GT-seq Primer Design and Panel Op8miza8on 

Our colleagues at GTseek (Twin Falls, ID) performed primer design and valida8on. Candidate loci chosen 
for primer design were N=800 of the autosomal loci with the highest popula8on gene8c divergence, N=2 
loci associated with the PRNP gene (Chafin et al. 2020), and N=3 sex-linked loci on the Y chromosome 
(Strickland et al. 2011). A total of N=578 loci passed the primer design filtering steps, and N=500 were 
chosen for primer synthesis and tes8ng. Tes8ng the designed primer panel involved preparing an ini8al 
test primer mix with all 500 primer sets and then using all designed primers to prepare and sequence a 
GT-seq library. The sequencing data were analyzed using Python and Perl scripts (available at: 
hips://github.com/Gtseq/Gtseek_u8ls). Primers with large amounts of associated “off-target” or primer 
ar8fact sequences are marked for omission from the primer mix. In this case, a set of 74 locus primers 
was chosen for omission because their primers either failed to amplify their intended target or produced 
a large number of off-target sequences. A final GT-seq panel of N=436 autosomal loci, N=2 PRNP loci, 
and N=3 sex-linked loci showed desirable genotype capture rates. It was used to genotype N=96 
individuals previously genotyped with ddRAD and N=96 newly sampled individuals (N=192 total 
individuals). 
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Appendix 2: GeoGenIE Development 

Data Preprocessing 

GEOGENIE applies several preprocessing steps in order to mi8gate biases associated with sparse and/or 
imbalanced datasets, as well as to detect and remove spurious signals (for example, associated with 
transloca8on). To address the unique transloca8on history of White-tailed Deer (Chafin et al. 2021), we 
integrated an algorithm inspired by GGOUTLIER (Chang et al. 2023) which detects ‘geo-gene8c outliers’, 
which may demonstrate gene8c differen8a8on reflec8ng aspa8al processes (Epps & Keyghobaldi 2015). 
This step considers outliers along both gene8c and geographic axes, using k-nearest neighbor (KNN) 
regression, and an expecta8on that isola8on-by-distance is ubiquitous at the local scale (Meirmans 2012; 
Rousset 1997). 

The input data, either GT-Seq CSV (comma-delimited) or VCF formaied files, are then divided into 
subsets used for model training, tes8ng, and valida8on. Here, the model is fiied to the ‘training’ subset, 
with its capacity to generalize evaluated using the valida8on sets – from this the performance of the 
model (‘loss’) is assessed across training itera8ons. True generaliza8on is then tested with wholly unseen 
data (the “test” set), a design commonly applied to reduce overfixng (i.e, model unable to generalise) 
and data leakage (i.e, biased accuracy due to the model having ‘seen’ the valida8on set). We then 
further hold out samples as a ‘predic8on set’, including samples with unknown locali8es for loca8on 
predic8on. Missing data imputa8on is applied using the most frequent allele per locus, and the data are 
encoded in a 0-1-2 format for reference, heterozygous, and alternate alleles, respec8vely. 

 

Model Architecture and Op8miza8on 

GEOGENIE uses a deep learning model built with PYTORCH >= 2.1.2 (Facebook AI Research 2019), building 
upon the mul8layer perceptron (MLP) architecture of LOCATOR (Baiey et al. 2020). Rather than using a 
fixed architecture (e.g, number of hidden layers), we implemented automated parameter tuning using 
Bayesian op8miza8on in OPTUNA (Akiba et al. 2019). This approach uses a tree-structured algorithm (TPE; 
tree-structured Parzen Es8mator) which refining the search space for parameter distribu8ons to 
heuris8cally iden8fy the best combina8on which minimizes predic8on error. Users can choose from 
three loss func8ons for predic8on error assessment (i.e, Distance Root Mean Square, Huber, and Root 
Mean Squared Error), with the final op8mized model used to generate various visualiza8ons, 
performance metrics, and full results for downstream repor8ng. GEOGENIE provides several output 
metrics aiding in interpreta8on of accuracy and precision of predic8ons. We calculate predic8on error of 
‘known’ samples using the Haversine distance between the predicted and observed locali8es (recorded 
upon sample collec8on). GEOGENIE also implements a parallelized bootstrapping of loci within 
individuals, with final predic8ons visualized as a density kernel of pseudoreplicated predic8ons.  

A novel feature implemented in GEOGENIE aims to tackle sampling imbalance. First, sample weights  are 
calculated based on inverse sampling density [i.e, 1 / (samples / km²)] rela8ve to geographically proximal 
neighbors. Using K-means clustering (Lloyd 1982), we group loca8ons so those within the same cluster 
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are closer to each other than to those in other clusters. The search for the op8mal number of clusters is 
automated by iden8fying the minimal silhoueie score. These weights are in turn op8onally enabled to 
assigns higher penal8es to less densely sampled regions, forcing a greater emphasis on these areas 
during model training. Further, GEOGENIE employs a stra8fied sampling design to evenly distribute 
samples from dense and sparse regions into training, valida8on, and tes8ng datasets using a similar 
approach. As a final mi8ga8ve op8on, a custom synthe8c over-sampling algorithm, adapted from SMOTE 
(Chawla et al. 2002), can be used to generate synthe8c samples using a Mendelian inheritance-based 
interpola8on, incorpora8ng regression-based techniques to balance sample densi8es for rela8vely 
sparse areas of the sampled space. 

 


