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Abstract
1.	 Landscape genomics identifies how spatial and environmental factors structure 

the amount and distribution of genetic variation among populations. Landscape 
genomic analyses have been applied across diverse taxonomic groups and eco-
logical settings, and are increasingly used to analyse datasets composed of large 
numbers of genomic markers and multiple environmental predictors.

2.	 It is in this context that multivariate methods show their strengths. Redundancy 
analysis (RDA) is a constrained ordination that, in a landscape genomics framework, 
models linear relationships among environment predictors and genomic variation, 
effectively identifying covarying allele frequencies associated with the multivari-
ate environment. RDA can be used at both individual and population levels, can 
include covariates to account for confounding factors and can be used to directly 
infer genotype–environment associations on the landscape. The modelling of both 
multivariate response and explanatory variables allows RDA to accommodate the 
genomic and environmental complexity found in nature, producing a powerful and 
efficient tool for landscape genomics.

3.	 In this review, we outline the diverse uses of RDA in landscape genomics, in-
cluding variable selection, variance partitioning, genotype–environment asso-
ciations, and the calculation of adaptive indices and genomic offset. To illustrate 
these applications, we use a published dataset for lodgepole pine that includes 
genomic, phenotypic and environmental data. We provide an introduction to 
the statistical basis of RDA, a tutorial on its use and interpretation in land-
scape genomics applications, discuss limitations and provide guidelines to avoid 
misuse.

4.	 This review and associated tutorial provide a comprehensive resource to the 
landscape genomics community to improve understanding of RDA as a modelling 
framework, and encourage the appropriate use of RDA across diverse landscape 
genomics applications. RDA is truly a Swiss Army Knife for landscape genomics: 
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1  | INTRODUC TION

Landscape genomics is a diverse and rapidly evolving field that inte-
grates techniques from population genetics, landscape ecology, spatial 
statistics and community ecology. Broadly, landscape genomics inves-
tigates the processes underlying patterns of neutral and adaptive ge-
netic variation in relation to environmental and spatial heterogeneity. 
Early work in neutral landscape genomics (sometimes referred to as 
‘landscape genetics’) focused on identifying spatial patterns of neu-
tral genetic variation (Manel & Holderegger, 2013; Manel et al., 2003), 
while later definitions emphasized explicit assessment of the effects of 
landscape configuration, composition, and matrix quality on gene flow 
and the spatial distribution of neutral variation (Storfer et  al.,  2007). 
The increased availability of dense, genomic-scale data has driven the 
emergence of adaptive landscape genomics (Balkenhol et  al.,  2019; 
Joost et al., 2007; Manel et al., 2010; Storfer et al., 2018), which not 
only allows for the identification of candidate adaptive loci associated 
with environmental variation (i.e. genotype–environment associations, 
GEA), but also facilitates downstream analyses such as the calculation 
of adaptive indices and genomic offsets, which are used to infer spatial 
adaptive gradients and their temporal shifts in response to environmen-
tal change. In the last two decades, these neutral and adaptive meth-
ods have been extended to investigate the complexities of terrestrial, 
freshwater and marine ecosystems. Recent applications range from the 
characterization of constrained movement corridors and asymmetrical 
gene flow across seascapes and riverscapes (Brauer et al., 2018; Xuereb 
et al., 2018), to the identification of adaptive genetic variation in birds, 
mammals and plants (Lasky et  al., 2015; Razgour et  al., 2019; Ruegg 
et al., 2018), and the study of local adaptation across current and future 
species ranges (Capblancq, Morin, et al., 2020; Steane et al., 2014).

Most methods used in adaptive landscape genomics are uni-
variate, meaning that they test one genetic marker at a time, and 
may also test only one environmental predictor at a time (Rellstab 
et al., 2015). For example, one of the first GEAs used a chi-squared 
test to identify a signature of local adaptation to drought in ponder-
osa pines at a single locus with three alleles (Mitton et al., 1977). 
By contrast, modern landscape genomic analyses may include hun-
dreds of thousands or even millions of genetic markers and multi-
ple environmental predictors, requiring millions of univariate tests, 
which do not account for covariation among environmental vari-
ables and/or genetic markers. To address this issue, multivariate 
statistical methods are increasingly used to analyse all markers and 
predictors simultaneously, allowing researchers to identify covary-
ing sets of genotypes and their relationship with the multivariate 

environment, a major advantage in contemporary, high-dimensional 
landscape genomic research.

One of the most commonly used multivariate landscape genomic 
methods is redundancy analysis (RDA), a form of constrained ordina-
tion. Ordination methods have been used in community ecology for al-
most 70 years to evaluate how environmental features shape patterns 
of community composition (Bray & Curtis,  1957; Whittaker,  1956). 
These models are an intuitive fit for modern genomic datasets, where 
we are interested in understanding how the multivariate environment 
shapes patterns of genomic composition across landscapes. RDA is 
based on multivariate regression, and models linear combinations of 
the explanatory variables (e.g. environmental predictors) that explain 
linear combinations of the response variables (e.g. single nucleotide 
polymorphisms, SNPs), effectively identifying covarying loci associ-
ated with the multivariate predictors (Legendre & Legendre, 2012, Box 
1). RDA is a highly flexible framework, which allows us to address four 
of the major questions in landscape genomics:

1.	 What environmental/spatial processes drive patterns of genetic 
variation?

2.	 What is the genetic basis of local adaptation to the environment?
3.	 How is adaptive genetic variation distributed across landscapes?
4.	 What are the impacts of climate and/or landscape change on the 

distribution of adaptive genetic variation?

In this review, we will explore the many uses of RDA in the field 
of landscape genomics, including variable selection, variance parti-
tioning, GEA, and the calculation of adaptive indices and genomic 
offset. We also provide a tutorial on the use and interpretation of 
RDA for these analyses (available at https://github.com/Capbl​ancq/
RDA-lands​cape-genomics), discuss limitations and provide guide-
lines to avoid misuse. Our goals are to provide resources to the land-
scape genomics community to improve understanding of RDA as a 
modelling framework, and encourage the appropriate use of RDA 
across diverse landscape genomics applications.

2  | RDA-BA SED L ANDSC APE GENOMIC S 
APPLIC ATIONS

2.1 | Empirical dataset

To illustrate different applications of RDA in landscape genomics, 
we used a large empirical dataset for lodgepole pine Pinus contorta, 

a multipurpose, adaptable and versatile approach to identifying, evaluating and 
forecasting relationships between genetic and environmental variation.

K E Y W O R D S

adaptive genetic variation, genomic offset, genotype–environment associations, landscape 
genomics, multivariate statistics, redundancy analysis, variable selection, variance partitioning
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BOX 1 Understanding RDA

Redundancy analysis is a type of asymmetric canonical analysis, that is, a method that analyses two or more data frames simultane-
ously by combining ordination and regression. Simple ordination via principal components analysis (PCA) is likely familiar to most 
readers as a method for characterizing the main axes of variance in a matrix (Y) into uncorrelated (orthogonal) synthetic composite 
variables (the PC axes). For example, PCA of a genetic data matrix (i.e. n individuals or populations genotyped at p loci) can be used 
to infer similarities and differences among sampled individuals/populations based on their multilocus genotypes. By comparison, 
multiple regression is used to model a single response variable (y) using a set of multiple predictor variables (X). If we extend multiple 
regression to the multivariate response matrix used in PCA (Y), we are conducting an RDA. RDA therefore identifies linear combina-
tions of the explanatory variables (X) that maximize the variance explained in linear combinations of the response (Y).

There are two steps to fitting a simple RDA: first, regress each variable in Y on the X explanatory variables and compute the fitted 
values (Y′); then conduct a PCA of the Y′ matrix to produce orthogonal constrained (‘canonical’) ordination axes, which are linear 
combinations of the predictors (Figure B1). Conditioning variables (W) can also be included to compute a partial RDA (pRDA). In this 
case, partial linear regression is used to adjust the linear effects of X on Y accounting for the covariables W (Figure B1). In landscape 
genomics, covariables may include variables to account for population structure, such as ancestry coefficients, PC axes or spatial 
eigenvectors (e.g. Moran's eigenvector maps; Dray et al., 2006; Forester et al., 2018; Gutaker et al., 2020; Lasky et al., 2012).

When RDA is conducted with genomic response and environmental predictor data, the constrained ordination axes are com-
prised of covarying sets of genotypes that are correlated with the multivariate environment. This ability to model both multivariate re-
sponse and multivariate explanatory variables, accommodating the genomic and environmental complexity found in nature, is what 
makes RDA such a unique and powerful tool in landscape genomics. We remind users that RDA identifies linear relationships among 
the response and predictor matrices; if nonlinear relationships are expected, other statistical frameworks may be more suitable, 
such as logistic regression (e.g. Joost et al., 2007), gradient forest (e.g. Fitzpatrick et al., 2021) or modified versions of RDA, such as 
polynomial RDA (Makarenkov & Legendre, 2002) and piecewise RDA (Vieira et al., 2019).

FIGURE B1 A comparison of procedures for fitting a simple redundancy analysis (left) and a partial redundancy analysis (right). Both 
share a common last step of computing a principal components analysis (PCA) of the fitted values, Y′. An example RDA biplot is 
shown, where RDA1, RDA2 and RDA3 are the orthogonal canonical axes, the dashed vectors represent the environmental predic-
tors and the grey points represent either the loci or individuals/populations (depending on which the user chooses to represent). The 
arrangement of these items in the ordination space reflects their relationship with the canonical axes. Figure inspired by Legendre 
and Legendre (2012)
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which includes both genomic (Mahony et al., 2020) and phenotypic 
(MacLachlan et al., 2017) data for 1,594 pine seedlings. The seed-
lings, grown in a common garden in Vancouver, British Columbia, 
came from 281 provenances (hereafter populations) distributed 
across the range of the species in British Columbia and Alberta 
(Canada). The genomic data consisted of 36,384 SNPs genotyped 
using a 50K SNP array (Mahony et al., 2020), including 3,934 inter-
genic SNPs used to account for neutral population structure and 
32,407 SNPs used for downstream analyses. On this latter set of 
loci, we filtered out SNPs with a minor allele frequency <5% and 
estimated allele frequencies for populations at each of the remain-
ing 29,941 loci. Population allele frequencies were then used as re-
sponse variables in all RDA-based procedures described below. Note 
that RDA can efficiently analyse datasets containing hundreds of 
individuals and over 1 million SNPs (e.g. Zhang et al., 2019), making 
it particularly useful for contemporary, high-dimensional landscape 
genomic research. RDA can also accommodate individual-based 
datasets using genotypes as the response (coded as the count of 
one allele, i.e. 0/1/2). The lodgepole pine phenotypic data (used 
here to validate genomic offset calculations) included seedling 
height and average growth rate measured after three growing sea-
sons (MacLachlan et al., 2017). Finally, we extracted the values of 
27 bioclimate variables for all 281 source populations and for the 
common garden in Vancouver from ClimateNA (Wang et al., 2016). 
Using this combination of genomic, environmental and phenotypic 
data, we were able to test applications of RDA and compare our 
findings with published results for lodgepole pine. For all analyses, 
we use R v.3.6.3 (R Core Team, 2020) and the vegan package v.2.5-7 
(Oksanen et al., 2015).

2.2 | Variable selection: Forward model 
building procedure

Variable selection is a critical preliminary step in ecological mod-
elling, including landscape genomics. Depending on the analytical 
goals and our mechanistic understanding of the system, we may 
use either a predictive or explanatory approach to variable selec-
tion (Mac Nally,  2000). Here we present a predictive approach 

using RDA with forward selection, where the goal is to maximize 
the genetic variance explained by a set of environmental predictors. 
This approach is well-suited when prediction is the primary objec-
tive and variable reduction is needed to avoid overfitting and col-
linearity (Dormann et al., 2013). The procedure begins with a test of 
significance of the global RDA model (all variables included). If this 
global model is significant (Blanchet et al., 2008), we begin forward 
selection with an empty model where multivariate genetic varia-
tion is explained by a fixed intercept. The model is then sequentially 
complexified by adding explanatory variables one by one, using two 
stopping criteria to prevent overestimation of the explained vari-
ance: a permutation-based significance test and the adjusted R2 of 
the global model. If the addition of a variable meets either stop-
ping criteria (i.e. permuted p-value is greater than the threshold or 
the adjusted R2 decreases), the variable is rejected and forward se-
lection ends. For example, Gibson and Moyle (2020) used forward 
selection with RDA to identify 14 abiotic variables associated with 
genetic variation in a wild tomato species. They found that vari-
able selection differed when accounting for geographical distance 
among sampled populations using partial RDA, likely because of 
collinearity between geographical distance and environmental vari-
ation. Furthermore, other variable selection approaches based on 
RDA may better handle the issue of collinearity among variables 
(e.g. sparse RDA proposed in Csala et al., 2017) and could be prom-
ising additions for landscape genomic studies.

We applied forward selection to the lodgepole pine data using 
the ordiR2step vegan function with the following stopping criteria: 
variable significance of p < 0.01 using 1,000 permutations, and the 
adjusted R2 of the global model (Supporting Information 1). In this 
and all subsequent analyses, we standardized the predictors (i.e. sub-
tracted the mean and divided by the standard deviation) to ensure 
the variable units were comparable (Legendre & Legendre,  2012). 
Note that RDA analyses can include qualitative predictors such 
as soil type using binary (‘dummy variable’) coding (Legendre & 
Legendre,  2012). In total, 9 of the 27 bioclimate variables were 
selected (Table  1), showing a strong influence of temperature 
extremes, solar radiation and moisture deficit. Mahony et al. (2020) 
identified winter temperature and mean annual precipitation as im-
portant drivers of local adaptation in lodgepole pine. Our expanded 

Variables R
2

adj
Cum R2

adj
F-value p-value

MAR - Mean Annual solar Radiation 0.0220 0.022 7.31 0.002**

EMT - Extreme Minimum Temp. 0.0223 0.044 7.50 0.002**

MWMT - Mean Warmest Month Temp. 0.0099 0.054 3.90 0.002**

CMD - Climatic Moisture Deficit 0.0086 0.063 3.55 0.002**

Tave wt - Winter Mean Temp. 0.0041 0.067 2.22 0.002**

DD18 - Degree Days below 18°C 0.0030 0.070 1.87 0.002**

MAP - Mean Annual Prec. 0.0017 0.072 1.51 0.002**

Eref - Potential Evaporation (Hargreave) 0.0016 0.073 1.47 0.002**

PAS - Prec. As Snow 0.0018 0.075 1.53 0.002**

**p ≤ 0.01.

TA B L E  1   Climatic variables identified 
as significantly associated with genetic 
variation using forward variable selection 
with RDA (redundancy analysis)
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set of nine predictors may lead to differences in interpretation when 
searching for drivers of selection (Section 4).

An important issue with any predictive approach to variable 
selection is that statistical selection of variables optimizes variance 
explained but cannot, by itself, identify the ecological or mechanis-
tic drivers of genetic variation (Mac Nally, 2000). To our knowledge, 
the impact of variable selection has not been specifically evalu-
ated in a landscape genomics context, but we can learn from the 
species distribution modelling community, which has published an 
abundant literature on this topic (Araújo & Guisan, 2006; Dormann 
et al., 2013; Fournier et al., 2017). A misuse of variable selection can 
potentially bias both biological conclusions and downstream analy-
ses. Especially when using large bioclimatic variable sets, pairwise 
predictor correlations can be very high, for example, among seasonal 
calculations of temperature or precipitation. While one variable may 
maximize variance explained, it may be another, correlated variable, 
potentially even unmeasured, that is the mechanistic driver of varia-
tion. The ubiquitous nature of environmental correlation means that 
it is critical to carefully investigate selected variables but also avoid 
overinterpretation of variable importance in downstream analyses 
unless mechanistic data support observed relationships.

2.3 | Variance partitioning: Disentangling the 
drivers of genetic variation

Another common goal of landscape genetics is to investigate the in-
fluence of environment [Isolation By Environment (IBE)], geographi-
cal features [Isolation By Distance (IBD) or Isolation By Resistance 
(IBR)] and demographic history (i.e. neutral genetic structure) on 
the distribution of genetic variation across species ranges (Orsini 
et al., 2013). Variance partitioning with pRDA can identify the contri-
bution of these factors to reducing gene flow and triggering genetic 
divergence among populations. Variance partitioning estimates the 
proportion of variance explained by one set of explanatory variables 
(e.g. climate) once the influence of other variables (e.g. geography 
and/or neutral population structure) has been removed (Legendre & 
Legendre, 2012). When comparing the amount of variance explained 

by each pRDA and the variance of a model including all explanatory 
variables (full model), it is possible to estimate the independent con-
tribution of each set of variables together with the confounded ef-
fect induced by collinearity (Peres-Neto et al., 2006). Partial RDAs 
have been used to estimate the different contribution of climate and 
space in explaining genetic variation for Arabidopsis thaliana (Lasky 
et al., 2012), beech (Capblancq, Morin, et al., 2020), sorghum (Lasky 
et  al.,  2015) and rice (Gutaker et  al.,  2021). Recent studies have 
extended the use of pRDA to investigate the relative contributions 
of current circulation, connectivity and physical distance in shaping 
neutral or adaptive genetic variation in marine landscapes (Benestan 
et al., 2016; Xuereb et al., 2018).

We apply pRDA-based variance partitioning to the lodgepole 
pine data to decompose the contribution of climate, neutral pop-
ulation structure and geography in explaining genetic variation. 
We used three sets of variables: (a) nine bioclimate variables (‘clim’, 
Table 1); (b) three proxies of neutral genetic structure (population 
scores along the first three axes of a genetic PCA conducted on the 
3,934 neutral loci; ‘struct’); and (c) population coordinates (longitude 
and latitude) to characterize geographical variation (‘geog’). We used 
population allele frequencies as the response variable in four differ-
ent models (Table 2, Supporting Information 1).

Together, climate, neutral genetic structure and geography sig-
nificantly explained 15% of the total genetic variance across lodge-
pole pine populations (Table  2). The effect of climate was highly 
significant even when controlling for population structure and geog-
raphy, and explained 4% of total genetic variation (27% of the vari-
ation explained by the full model), suggesting association between 
genetic variation and environmental gradients (IBE). The pure effect 
of genetic structure accounted for 3% of total genetic variance (21% 
of explained variation) while geographical coordinates accounted 
for only 1% (5% of explained variation). Demography and geography 
are not always differentiated when conducting variance partition-
ing, since isolation by distance (IBD) is often the main driver (or a 
good proxy) of intraspecific genetic structure (Lasky et  al.,  2015). 
Nonetheless, it can be useful to assess their independent contri-
butions when the studied species has experienced a complex de-
mographic history in combination with IBD. Finally, we found that 

TA B L E  2   The influence of climate, geography and neutral genetic structure on genetic variation decomposed with pRDA (partial 
redundancy analysis). Inertia is analogous to variance. The proportion of explainable variance represents the total constrained variation 
explained by the full model

Partial RDA models Inertia R2 p (>F)
Proportion of explainable
Variance

Proportion of total
Variance

Full model: F ~ clim. + geog. + struct. 85.3 0.146 0.001*** 1 0.15

Pure climate: F ~ clim. | (geog. + struct.) 22.7 0.039 0.001*** 0.27 0.04

Pure structure: F ~ struct. | (clim. + geog.) 17.7 0.030 0.001*** 0.21 0.03

Pure geography: F ~ geog. | (clim. + struct.) 4.2 0.007 0.004*** 0.05 0.01

Confounded climate/structure/geography 40.6 0.48 0.07

Total unexplained 498.4 0.85

Total inertia 583.6 1.00

***p ≤ 0.001.
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the largest proportion of genetic variance could not be uniquely 
attributed to any of the three sets of predictors (48% of explained 
variation). This confounded effect reflects a high degree of collinear-
ity between explanatory variables and especially among the three 
groups of predictors (climate, structure and geography; Supporting 
Information 2). In other words, while we know that climate, neutral 
genetic structure and geography explain a large amount of genetic 
variation in lodgepole pine, almost half of this explainable variation is 
statistically impossible to associate with any specific predictor. This 
is critical information given that most landscape genomic studies 
look for correlation between climatic and genetic variation (i.e. GEA) 
and either assume no collinearity between environment and other 
drivers of genetic divergence or, on the contrary, totally remove this 
commonly explained variation by removing the effect of population 
structure or geographical variation (Frichot et al., 2015). In the first 
case, GEA detections could potentially be subject to high false-
positive rates, while in the latter case detections might show high 
false-negative rates (Forester et al., 2018). Selecting an appropriate 
approach to account for demographic history and geographical dis-
tance is of major importance when searching for selection in the ge-
nome (Hoban et al., 2016). Variance partitioning can be a useful step 
to explore the (statistical) association among available descriptors, 
to better understand the covariation of environmental and genetic 
gradients, and to determine how much overall genetic variation is 
shaped by environmental, geographical and demographic factors be-
fore conducting further landscape genomics study.

2.4 | Genotype–Environment Associations: 
Identifying loci under selection

Genotype–environment associations regress genetic variation 
against environmental variables to identify loci showing statistical 
associations with the predictors. Identifying genetic adaptation to 
complex and/or multiple environmental gradients has triggered the 

development of multivariate GEA methods (Fitzpatrick et al., 2021; 
Forester et  al.,  2018; Lasky et  al.,  2012). RDA appears to be, to 
date, one of the best-performing multivariate GEA solution, with 
higher true-positive and lower false-positive rates compared to 
univariate and other multivariate tests (Capblancq et  al.,  2018; 
Forester et al., 2018). RDA is also comparatively robust to sampling 
design, with higher power than other approaches even when sam-
pling does not maximize environmental differentiation (Forester 
et al., 2018). Slightly different procedures have been described in 
the literature but all of them start by using an RDA model with mul-
tilocus genetic variation as response (either individual genotypes 
or population allele frequencies) and a set of environmental pre-
dictors as explanatory variables, sometime adding geographical 
coordinates or proxies for neutral genetic structure as condition-
ing variables in a pRDA to account for their confounded effects. 
By definition, the RDA will model linear relationships among the 
genetic markers and explanatory variables, and ordinate this vari-
ation along orthogonal axes that condense patterns of covariation 
between genetic markers and environmental predictors (Box 1). 
Each genetic marker included in the response will have a score or 
‘loading’ along each of the newly built RDA axes. The loci putatively 
under selection are the markers showing extreme loadings along 
one or multiple axes. RDA has been used to find the genetic basis 
of adaptation in organisms with varied life-history traits including 
mammals (Razgour et al., 2019), echinoderms (Xuereb et al., 2018), 
fish (Brauer et al., 2018), birds (Friis et al., 2018; Stuart et al., 2020), 
crops (Lasky et  al.,  2015), annual plants (Lasky et  al.,  2012; 
Massatti & Knowles, 2020) and long-lived trees (Capblancq, Morin, 
et al., 2020; Steane et al., 2014). It has also been adapted to the 
analysis of gene expression data (Rougeux et  al.,  2019), pheno-
types (Blanco-Pastor et al., 2020; Carvalho et al., 2020), copy num-
ber variants (Dorant et  al.,  2020) and haplotype variation (Morin 
et al., 2021).

Here, we used pRDA to identify candidate adaptive markers 
in the lodgepole pine data using population allele frequencies for 

F I G U R E  1   Results of the genotype–environment association using partial RDA (redundancy analysis). (a) The projection of loci and 
environmental variables along the first two RDA axes. The locus scores are rescaled to an unshown axis for better visibility. (b) A Manhattan 
plot with the distribution of −log10(p-values). Loci identified as outliers (p-value <3.4 × 10−7 and the lowest p-value per contig) are coloured 
for both panels
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the 29,941 loci as response and the 9 selected bioclimate variables 
(Table  1) as predictors. We following the procedure described in 
Capblancq et al. (2018) where outliers are identified based on their 
extremeness along a distribution of Mahalanobis distances esti-
mated between each locus and the centre of the RDA space using 
a certain number of axes (K). We used the first two axes (K = 2), 
which explained most of the genetic variance associated with the 
predictors (Figure 1) and partialled out the first three axes of a PCA 
of the neutral genetic markers (i.e. using only the 3,934 intergenic 
SNPs) to account for population structure. The Mahalanobis dis-
tances were corrected for the inflation factor (François et al., 2016) 
and transformed into p-values using a chi-squared distribution with 
K  =  2 degrees of freedom (Luu et  al.,  2017). The loci returning a 
p-value inferior to 0.01/number of tests (0.01/29,941 = 3.4 × 10–7), 
and the lowest p-value per contig were identified as candidate adap-
tive outliers (Supporting Information 1). Note that an alternative 
post-processing approach directly uses the loadings on each RDA 
axis independently, without a transformation to p-values (Forester 
et al., 2018; Lasky et al., 2012).

The RDA biplot illustrates how the genetic variation cor-
relates with environmental predictors and how the selected 
genetic component varies along adaptive gradients (Figure  1a). 
The first axis, accounting for 29% of the variation, was primar-
ily associated with moisture indices and summer precipitation 
variables, while the second axis (11.5%) was driven by summer 
temperatures and snow accumulation. We identified 583 loci 
showing extreme association with these two major axes of varia-
tion (i.e. p-values <3.4 × 10−7; Figure 1b), reduced to a set of 183 
unlinked outliers when retaining the best hit for each genomic 
contig. 126 of these 183 markers (69%) were also identified by 
Mahony et  al.  (2020) using Bayenv2 (Günther & Coop,  2013), 
and a third (326) of the 865 loci identified with Bayenv2 were 
identified in the larger set of 583 RDA candidates (Supporting 
Information 3).

In this example, we accounted for population structure, as is 
commonly recommended when conducting genome scans; however, 
there are cases where this approach can be overly conservative 
(Forester et al., 2018). Variance partitioning (Section 3) indicated a 
high proportion of confounded variance among climatic variation 
and neutral population structure, with no possibility to statistically 
disentangle the two factors (Table 2). In this case, correcting for pop-
ulation structure will remove statistical signal associated with both 
factors, reducing true positive rates. By contrast, not accounting 
for population structure can lead to an increased number of false-
positive detections if signatures of neutral structure follow selec-
tive gradients (Excoffier et al., 2009). To investigate this issue in the 
lodgepole pine data, we compared the candidates identified with the 
partial RDA to those identified using a simple RDA. Our results show 
some degree of overlap between the two approaches, with 42% 
of the adaptive loci (424/1012) and 24% of the top hits per contig 
(95/399) being identified by both partial and simple RDA-based ge-
nome scans (Supporting Information 4). We emphasize that there is 
no correct answer to this common dilemma of confounded variation 

in GEA, differentiation-based and genome-wide association anal-
yses. Instead, researchers must balance their tolerance for false-
negative and false-positive rates, and use an analytical approach 
that best matches the objectives of the study as well as the potential 
ability to validate candidate loci. Awareness of the trade-offs asso-
ciated with decisions such as population structure correction will 
allow users to appropriately interpret their results, both statistically 
and biologically.

2.5 | Adaptive landscape: Projecting adaptive 
gradient(s) across space

Once candidate adaptive markers and their potential environmental 
drivers have been identified with GEA, the genotype–environment 
relationship can be used to predict an index of genetic composition 
for any environment across the landscape (Capblancq et al., 2020). 
Once again, RDA provides a flexible framework for this analysis and 
has been used to map adaptive variation in common beech across 
the French Alps (Capblancq, Morin, et al., 2020), and to extrapolate 
eucalyptus adaptation to aridity in southeastern Australia (Steane 
et al., 2014).

We investigated the lodgepole pine adaptive landscape in west-
ern North America using the 95 loci identified as outliers (top hit per 
contig) by both the simple and partial RDAs conducted in Section 4. 
These loci were used as the multivariate response in an ‘adaptively 
enriched’ RDA using the nine selected bioclimate variables (Table 1) 
as explanatory variables. We followed the procedure described in 
Steane et al. (2014) that uses the scores of the environmental vari-
ables along the RDA axes to calculate a genetic-based index of ad-
aptation for each environmental pixel of the landscape. This index 
is estimated independently for each RDA axis of interest using the 
formula:

where a is the climatic variable score (loading) along the RDA axis, b 
is the standardized value for this particular variable at the focal pixel 
and i refers to one of the n different variables used in the RDA model 
(Supporting Information 1). The climatic variable scores used here are 
estimated based on how each predictor affects (magnitude and direc-
tion) adaptive genetic variation along the RDA axes. The adaptive index 
thus provides an estimate of adaptive genetic similarity or difference 
of all pixels on the landscape as a function of the values of the environ-
mental predictors at that location.

The ‘adaptively enriched genetic space’ shows how the genetic 
markers correlate with the different bioclimate variables as well as 
how the bioclimate variables correlate with each other (Figure 2a). 
De facto, most of the variation is aggregated on RDA1 (67% of the 
variance) along which allele frequencies were either associated 
with high summer precipitation and a high number of degree days 
below 18°C (positive RDA1 scores) or with low moisture deficit, high 

Adaptive Index =

n
∑

i=1

aibi ,
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potential evapotranspiration and high solar radiation (negative RDA1 
scores). The extrapolation of this adaptive gradient on the land-
scape (Figure 2b) showed how RDA1 index contrasts southern and 
low elevation areas (negative RDA1 scores) from high elevation and 
northern areas (positive RDA1 scores). The adaptive gradients as-
sociated with RDA2 (21% of the variance) differentiated the coastal 
and southern areas characterized by warmer temperatures and more 
precipitation during winter (positive RDA2 scores) to inland and 
mountainous areas characterized by colder extreme temperatures 
and later start of the frost-free period and more degree days below 
18°C (negative RDA2 scores). Mahony et al.  (2020), using a totally 
different approach, found a similar gradient of genetic adaptation 
for lodgepole pine, with groups of adaptive loci that varied along the 
elevation gradient (Cluster 4 in their study) or distinguished coastal 
from continental populations (Clusters 4 and 6 in their study).

Using RDA to visualize adaptive landscapes is straightforward, 
flexible and useful when studying the distribution of adaptive al-
leles across species ranges or when looking for adaptive units within 
species for conservation or management purposes. Nonetheless, 
any prediction procedure such as this relies on the extrapolation 
of correlative relationships and carries potential pitfalls (Yates 
et al., 2018). Predicting any genetic-based adaptive index in unsam-
pled areas could be strongly biased if the value or combination of 
the environmental predictors in those projected areas exceed those 
used to train the model. Similarly, any projection could be inaccu-
rate if the genetic–environment relationship is not well character-
ized, either because the scale of the analyses (e.g. size of the pixel) 
does not capture the complexity of the association or because the 
distribution of the identified genetic variation is not optimal across 
the current and/or future environmental landscape (e.g. due to re-
cent demographic history, barriers to gene flow, genetic drift in small 
populations, fluctuating trait heritability, varying selection pressures 
or genetic architecture; Kardos & Luikart, 2021).

Finally, beyond predicting adaptive indices, RDA can be used 
to estimate individual genotypes or population allele frequencies 
as a function of environmental variation. For example, Carvalho 
et al. (2020) used RDA to identify suitable genetic provenances for 

revegetation efforts at highly disturbed mining sites, an application 
that could also be used to inform climate-adjusted provenancing and 
assisted gene flow efforts (Aitken & Bemmels, 2016). There are po-
tential statistical problems associated with these predictions, how-
ever, such as negative estimates of allele counts or frequencies. One 
attempt to address these issues combines calibration and prediction 
of genotype–environment models using RDA with the use of gen-
eralized additive models to constrain predictions within a realistic 
range (Kindt, 2021). Efforts such as these will continue to expand 
and refine the RDA toolkit for landscape genomics applications.

2.6 | Predicting local maladaptation: Genomic offset

The genetic–environment relationship used above can be extrapo-
lated to future environments to predict a potential shift in adap-
tive optimum induced by climate change (Capblancq, Fitzpatrick, 
et al., 2020). If the change of local environments is significant enough 
that populations are not able to track it, in situ, by modifying their ge-
netic composition, it could translate into maladaptation and eventu-
ally reduce population fitness (Bay et al., 2018). Investigating how best 
to predict future maladaptation has become a topic of recent interest 
(Capblancq, Fitzpatrick, et al., 2020; Fitzpatrick & Keller, 2015; Rellstab 
et  al.,  2016), including through the use of RDA models (Capblancq, 
Morin, et al., 2020). The RDA-based method to predict future malad-
aptation is relatively simple. As described above, RDA can be used to 
predict the optimal adaptive index for each environmental pixel under 
consideration (Section 5), using both current and future environmental 
conditions. The difference between the two predictions provides an 
estimate of the shift in adaptive index that would be required to track 
climate change. This proxy has been successively named genetic/
genomic offset (Fitzpatrick & Keller, 2015), risk of non-adaptedness 
(Rellstab et al., 2016) or genomic vulnerability (Bay et al., 2018).

We estimated genomic offset for lodgepole pine by applying 
the same procedure used for current climate (Section 5) to future 
climate projections (Wang et  al.,  2016), predicting adaptive indi-
ces based on RDA1 and RDA2. We then calculated the Euclidean 

F I G U R E  2   Lodgepole pine adaptive landscape with (a) the adaptively enriched genetic space showing association between adaptive loci 
and climatic drivers of adaptation and (b) spatial projection of adaptive genetic turnover across the species range. The locus loadings in panel 
(a) are rescaled to an unshown axis for better visibility
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distance between each pixel score under current and future climates 
for each of the first two RDA axes to produce a genomic offset value 
(Supplementary material 1). Genomic offsets estimated for 2050 
and 2080 were mapped across the species range to show the areas 
where maladaptation may pose a risk under future climate change.

Our model predicted a contrasted pattern for 2050 (Figure 3), 
with low values of genomic offset in the Canadian part of the spe-
cies range and a higher risk of maladaptation in the southern edge 
(genomic offset >1). The prediction for 2080 shows a clear increase 
in genomic offset, especially in the Californian Sierra Nevada and 
southern Rocky Mountains, while the coastal and northern popula-
tions will be less impacted (Figure 3).

A challenge associated with any predictive method is validating 
the predictions, which are usually based on statistical association 
only (Capblancq, Fitzpatrick, et al., 2020). Here, we use an approach 
that takes advantage of the common garden experiment conducted 
in lodgepole pine. We estimated genomic offset between the climate 
of each source population and the climate of the garden where the 
seedlings were grown (in Vancouver, BC, Canada) and were then 
able to test the influence of the predicted genomic offset on the 
seedling fitness traits (Fitzpatrick et al., 2021). We found a strongly 
negative relationship between genomic offset and seedling fitness in 
the common garden (Height: p-value = 1.2e-9 and R2 = 0.12; Growth 
rate: p-value = 7.9e-15 and R2 = 0.19; Supporting Information 5), in-
dicating that fitness decreases as genomic offset increases. This 
validation approach assumes that a transfer across the range of the 
species (space) could be equivalent to a future change in local envi-
ronmental conditions (time; Blois et al., 2013). Common garden data 
could also be used to assess the capacity of the model to predict 
beyond its training range if the common garden experienced envi-
ronmental conditions outside the range of the sampled populations, 
including extreme values or new combinations of environmental 

variables (Fitzpatrick et  al.,  2018). This validation procedure con-
firms that genomic offset can be a powerful tool to design manage-
ment or conservation strategies in the context of climate change.

3  | CONCLUSIONS

Redundancy analysis is a Swiss Army Knife for landscape genomic 
analyses: a multipurpose, adaptable and versatile statistical frame-
work for identifying, evaluating and projecting relationships be-
tween genetic and environmental variation. Because RDA models 
both multivariate responses and predictors, it effectively identifies 
covarying sets of loci that are correlated with the multivariate en-
vironment, in contrast to univariate methods. This allows RDA to 
better accommodate and represent the genomic and environmental 
complexity found in nature. Additionally, RDA can be used to model 
genetic data at the individual or population levels, can account for 
conditioning variables, such as data reflecting population struc-
ture, and is computationally efficient when applied to modern, large 
genomic datasets. These characteristics make RDA an intuitive fit 
for the analysis of covariation between high-dimensional genomic 
data and complex landscape and environmental features.

Redundancy analysis has one important limitation: it models lin-
ear relationships among response and predictors, meaning that non-
linear relationships will not be detected. In landscape genomics and 
GEA studies, linearity is often assumed even if it does not always 
capture the exact relationship between environmental gradients 
and the induced adaptive genetic variation. Fortunately, there are 
nonlinear statistical methods that have been adapted to landscape 
genomic analyses, such as logistic regression and gradient forest. 
Similarly, variations on the classic RDA method, such as polyno-
mial and piecewise RDA, have been developed to accommodate 

F I G U R E  3   Mean predicted genomic offset for lodgepole pine in 2050 and 2080 using the RCP8.5 climate scenario and the ensemble 
projection of 15 CMIP 5 AOGCMs (see http://clima​tena.ca)
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nonlinear relationships, though these have yet to see development 
or use in landscape genomics. Ongoing testing of the strengths, 
limitations and complementary applications of the varied statistical 
methods, including RDA, in landscape genomics will continue to be 
important in improving the insights and value of landscape genomic 
applications.
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